cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 191 results. Next

A195584 O.g.f.: exp( Sum_{n>=1} (sigma(2*n^2)-sigma(n^2)) * x^n/n ).

Original entry on oeis.org

1, 2, 6, 18, 42, 102, 238, 522, 1130, 2394, 4926, 9978, 19890, 38942, 75254, 143598, 270506, 504126, 929926, 1698322, 3074010, 5516898, 9820550, 17349554, 30430610, 53007162, 91734262, 157771538, 269734714, 458542822, 775281982, 1303971722, 2182227546, 3634444634
Offset: 0

Views

Author

Paul D. Hanna, Sep 20 2011

Keywords

Comments

Compare g.f. to the formula for Jacobi theta_4(x) given by:
theta_4(x) = exp( Sum{n>=1} -(sigma(2*n)-sigma(n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).
Here sigma(n) = A000203(n) is the sum of divisors of n.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 42*x^4 + 102*x^5 + 238*x^6 +...
where
log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 +...+ A195585(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n^2] - DivisorSigma[1, n^2])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^2)-sigma(m^2))*x^m/m)+x*O(x^n)), n)}

Formula

O.g.f.: exp( Sum_{n>=1} A054785(n^2)*x^n/n ), where exp( Sum_{n>=1} A054785(n)*x^n/n ) = 1/(1+2*Sum_{n>=1} (-x)^(n^2)), which is the g.f. of A015128.

A236001 Sum of positive ranks of all overpartitions of n.

Original entry on oeis.org

0, 2, 4, 10, 20, 36, 64, 110, 180, 288, 452, 696, 1052, 1568, 2304, 3346, 4808, 6838, 9636, 13464, 18664, 25684, 35104, 47672, 64348, 86368, 115304, 153152, 202452, 266404, 349032, 455406, 591856, 766284, 988544, 1270862, 1628380, 2079828, 2648296, 3362180
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

Consider here that the rank of a overpartition is the largest part minus the number of parts (the same idea as the Dyson's rank of a partition).
It appears that the sum of all ranks of all overpartitions of n is equal to zero.
The equivalent sequence for partitions is A209616.

Examples

			For n = 4 we have:
---------------------------
Overpartitions
of 4               Rank
---------------------------
4               4 - 1 =  3
4               4 - 1 =  3
2+2             2 - 2 =  0
2+2             2 - 2 =  0
3+1             3 - 2 =  1
3+1             3 - 2 =  1
3+1             3 - 2 =  1
3+1             3 - 2 =  1
2+1+1           2 - 3 = -1
2+1+1           2 - 3 = -1
2+1+1           2 - 3 = -1
2+1+1           2 - 3 = -1
1+1+1+1         1 - 4 = -3
1+1+1+1         1 - 4 = -3
---------------------------
The sum of positive ranks of all overpartitions of 4 is 3+3+1+1+1+1 = 10 so a(4) = 10.
		

Crossrefs

Programs

  • PARI
    a(n)={my(s=0); forpart(p=n, my(r=p[#p]-#p); if(r>0, s+=r*2^#Set(p))); s} \\ Andrew Howroyd, Feb 19 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, Feb 19 2020

A261611 Expansion of Product_{k>=0} (1 + x^(4*k+1))/(1 - x^(4*k+1)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 6, 6, 8, 12, 14, 14, 16, 22, 28, 30, 32, 40, 50, 56, 60, 70, 86, 98, 106, 120, 144, 166, 180, 200, 234, 270, 296, 324, 372, 428, 472, 514, 580, 664, 736, 800, 890, 1010, 1124, 1222, 1346, 1514, 1684, 1834, 2008, 2240, 2488, 2712, 2956
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Comments

In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k+b))/(1 - x^(a*k+b)), then a(n) ~ Gamma(b/a) * a^(b/(2*a) - 1/2) * Pi^(b/a - 1) * exp(Pi*sqrt(n/a)) / (2^(2*b/a + 1) * n^(b/(2*a) + 1/2)).

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(4*k+1))/(1 - x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n)/2) * Gamma(1/4) / (2^(9/4) * Pi^(3/4) * n^(5/8)).

A341366 Expansion of (1 / theta_4(x) - 1)^5 / 32.

Original entry on oeis.org

1, 10, 60, 275, 1060, 3612, 11210, 32310, 87665, 226130, 558684, 1329720, 3062905, 6853310, 14941330, 31820642, 66343150, 135659570, 272496680, 538427720, 1047788137, 2010303890, 3806292130, 7118038360, 13157217715, 24055170690, 43527162380, 77994164515, 138463246700
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^5/32, {x, 0, nmax}], x] // Drop[#, 5] &
    nmax = 33; CoefficientList[Series[(1/32) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (1/32) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^5.

A341367 Expansion of (1 / theta_4(x) - 1)^6 / 64.

Original entry on oeis.org

1, 12, 84, 442, 1932, 7392, 25551, 81468, 243126, 686400, 1848156, 4775874, 11904215, 28737732, 67416756, 154122912, 344177823, 752310720, 1612395007, 3393652848, 7023685794, 14311193104, 28737793986, 56924936052, 111323290934, 215095157964, 410895944148, 776529566516
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^6/64, {x, 0, nmax}], x] // Drop[#, 6] &
    nmax = 33; CoefficientList[Series[(1/64) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (1/64) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^6.

A004402 Expansion of 1 / Sum_{n=-oo..oo} x^(n^2).

Original entry on oeis.org

1, -2, 4, -8, 14, -24, 40, -64, 100, -154, 232, -344, 504, -728, 1040, -1472, 2062, -2864, 3948, -5400, 7336, -9904, 13288, -17728, 23528, -31066, 40824, -53408, 69568, -90248, 116624, -150144, 192612, -246256, 313808
Offset: 0

Views

Author

Keywords

Comments

Taylor series for 1/theta_3. Absolute values are coefficients in Taylor series for 1/theta_4.
Euler transform of period-4 sequence [-2,3,-2,1,...].

References

  • J. R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372.

Crossrefs

See A015128 for a version without signs.

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A004402List(len) = JacobiTheta3(len, -1)
    A004402List(35) |> println # Peter Luschny, Mar 12 2018
  • Maple
    S:=series(1/JacobiTheta3(0,x),x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Dec 29 2015
  • Mathematica
    terms = 35; 1/EllipticTheta[3, 0, x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Jul 05 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(1/sum(k=1,sqrtint(n),2*x^k^2,1+x*O(x^n)),n))
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^4+A)^2/eta(x^2+A)^5, n))}
    

Formula

Ramanujan gave an asymptotic formula (see Almkvist).
G.f.: 1/Product_{m>0} ((1-q^(2m))(1+q^(2m-1))^2) = 1/theta_3(q).
a(n) = (-1)^n * A015128(n).

A004404 Expansion of 1 / (Sum_{n=-oo..oo} x^(n^2))^3.

Original entry on oeis.org

1, -6, 24, -80, 234, -624, 1552, -3648, 8184, -17654, 36816, -74544, 147056, -283440, 535008, -990912, 1803882, -3232224, 5707624, -9943536, 17106960, -29088352, 48922320, -81438528, 134261584, -219336630, 355242288
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    S:= series(1/JacobiTheta3(0,x)^3,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Dec 29 2015
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)

Formula

a(n) ~ (-1)^n * 3*exp(Pi*sqrt(3*n)) / (64*n^(3/2)) * (1 - sqrt(3)/(Pi*sqrt(n))). - Vaclav Kotesovec, Aug 18 2015, extended Jan 16 2017

A235797 Triangle read by rows in which T(n,k) is the sum of the k-th largest elements in all overpartitions of n.

Original entry on oeis.org

2, 6, 2, 16, 6, 2, 34, 14, 6, 2, 68, 30, 14, 6, 2, 128, 60, 30, 14, 6, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2014

Keywords

Comments

It appears that T(n,k) is also the total number of parts >= k in all overpartitions of n.
It appears that the first differences of row n together with 2 give row n of triangle A235798.
The equivalent sequence for partitions is A181187.

Examples

			Triangle begins:
    2;
    6,  2;
   16,  6,  2;
   34, 14,  6,  2;
   68, 30, 14,  6,  2;
  128, 60, 30, 14,  6,  2;
  ...
		

Crossrefs

A261389 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3*k).

Original entry on oeis.org

1, 6, 30, 128, 486, 1704, 5604, 17484, 52206, 150118, 417696, 1128984, 2973476, 7650720, 19272432, 47616568, 115570014, 275921460, 648771802, 1503889488, 3439990344, 7770915816, 17349229908, 38306180052, 83694778556, 181052778078, 387976101432, 823939048560
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A255610 and A027346.
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(t*k) and t>=1, then a(n) ~ exp(t/12 + 3/2 * (7*t*Zeta(3)/2)^(1/3) * n^(2/3)) * t^(1/6 + t/36) * (7*Zeta(3))^(1/6 + t/36) / (A^t * 2^(2/3 + t/9) * sqrt(3*Pi) * n^(2/3 + t/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Cf. A156616 (t=1), A261386 (t=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/4 + 3/2 * (21*Zeta(3)/2)^(1/3) * n^(2/3)) * (7*Zeta(3)/3)^(1/4) / (2 * A^3 * sqrt(Pi) * n^(3/4)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A264686 Expansion of Product_{k>=1} (1 + 2*x^k)/(1 - x^k).

Original entry on oeis.org

1, 3, 6, 15, 27, 51, 93, 159, 264, 432, 696, 1086, 1683, 2553, 3837, 5700, 8367, 12147, 17505, 24972, 35361, 49728, 69402, 96243, 132657, 181782, 247692, 335838, 453042, 608289, 813102, 1082256, 1434519, 1894215, 2491644, 3265869, 4265973, 5553771, 7207167
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 21 2015

Keywords

Comments

Convolution of A000041 and A032302.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 2*b(n-i, i-1))))
        end:
    a:= n-> add(b(i$2)*combinat[numbpart](n-i), i=0..n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 22 2017
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    { my(n=40); Vec(prod(k=1, n, 3/(1-x^k) - 2 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(3)*n), where c = 2*Pi^2/3 + log(2)^2 + 2*polylog(2, -1/2) = 6.163360867463814765670634381079217086937812673723341... . - Vaclav Kotesovec, Jan 04 2016
Previous Showing 61-70 of 191 results. Next