cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001934 Expansion of 1/theta_4(q)^2 in powers of q.

Original entry on oeis.org

1, 4, 12, 32, 76, 168, 352, 704, 1356, 2532, 4600, 8160, 14176, 24168, 40512, 66880, 108876, 174984, 277932, 436640, 679032, 1046016, 1597088, 2418240, 3632992, 5417708, 8022840, 11802176, 17252928, 25070568, 36223424, 52053760, 74414412
Offset: 0

Views

Author

Keywords

Comments

Euler transform of period 2 sequence [ 4, 2, ...].
The Cayley reference actually is to A004403. - Michael Somos, Feb 24 2011
Number of overpartition pairs, see Lovejoy reference. - _Joerg Arndt, Apr 03 2011
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^m and m>=1, then a(n) ~ exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)). - Vaclav Kotesovec, Aug 17 2015

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A001934List(len) = JacobiTheta4(len, -2)
    A001934List(33) |> println # Peter Luschny, Mar 12 2018
  • Maple
    mul((1+x^n)^2/(1-x^n)^2,n=1..256);
  • Mathematica
    CoefficientList[Series[1/EllipticTheta[4, 0, q]^2, {q, 0, 32}], q]  (* Jean-François Alcover, Jul 18 2011 *)
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    QP = QPochhammer; s = QP[q^2]^2/QP[q]^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    my(N=33, x='x+O('x^N)); Vec(prod(i=1, N, (1+x^i)^2/(1-x^i)^2))
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A)^4, n))} /* Michael Somos, Feb 09 2006 */
    

Formula

G.f.: Product ( 1 - x^k )^{-c(k)}, c(k) = 4, 2, 4, 2, 4, 2, ....
G.f.: Product{i>=1} (1+x^i)^2/(1-x^i)^2. - Jon Perry, Apr 04 2004
Expansion of eta(q^2)^2/eta(q)^4 in powers of q, where eta(x)=prod(n>=1,1-q^n).
a(n) = (-1)^n * A004403(n). a(n) = 4 * A002318(n) unless n=0. - Michael Somos, Feb 24 2011
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(15/4) * n^(5/4)) * (1 - 15/(8*Pi*sqrt(2*n)) + 105/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 17 2015, extended Jan 22 2017
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
G.f.: exp(2*Sum_{k>=1} (sigma(2*k) - sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018
The g.f. A(q^2) = 1/(F(q)*F(-q)), where F(q) = theta_3(q) = Sum_{n = -oo..oo} q^(n^2) is the g.f. of A000122. Cf. A002513. - Peter Bala, Sep 26 2023

Extensions

More terms from James Sellers, Sep 08 2000
Edited by N. J. A. Sloane, May 13 2008 to remove an incorrect g.f.

A341364 Expansion of (1 / theta_4(x) - 1)^3 / 8.

Original entry on oeis.org

1, 6, 24, 77, 216, 552, 1315, 2964, 6387, 13255, 26640, 52074, 99336, 185430, 339483, 610709, 1081227, 1886484, 3247502, 5521365, 9279624, 15429149, 25397088, 41412030, 66928700, 107265576, 170556654, 269164346, 421765920, 656419080, 1015044526, 1559950185, 2383284894
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^3/8, {x, 0, nmax}], x] // Drop[#, 3] &
    nmax = 35; CoefficientList[Series[(1/8) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

G.f.: (1/8) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^3.
a(n) ~ A319552(n)/8 ~ 3*exp(Pi*sqrt(3*n)) / (512*n^(3/2)). - Vaclav Kotesovec, Feb 20 2021

A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 14, 0, 1, 10, 40, 80, 76, 24, 0, 1, 12, 60, 160, 234, 168, 40, 0, 1, 14, 84, 280, 552, 624, 352, 64, 0, 1, 16, 112, 448, 1110, 1712, 1552, 704, 100, 0, 1, 18, 144, 672, 2004, 3912, 4896, 3648, 1356, 154, 0, 1, 20, 180, 960, 3346, 7896, 12600, 13120, 8184, 2532, 232, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 10 2017

Keywords

Examples

			Square array begins:
1,   1,    1,    1,     1,     1,  ...
0,   2,    4,    6,     8,    10,  ...
0,   4,   12,   24,    40,    60,  ...
0,   8,   32,   80,   160,   280,  ...
0,  14,   76,  234,   552,  1110,  ...
0,  24,  168,  624,  1712,  3913,  ...
		

Crossrefs

Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values).
Rows n=0-2 give: A000012, A005843, A046092.
Main diagonal gives A270919.
Antidiagonal sums give A299108.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A288515Column(k, len) = JacobiTheta4(len, -k)
    for k in 0:8 A288515Column(k, 8) |> println end # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.
G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A001934.

A319552 Expansion of 1/theta_4(q)^3 in powers of q = exp(Pi i t).

Original entry on oeis.org

1, 6, 24, 80, 234, 624, 1552, 3648, 8184, 17654, 36816, 74544, 147056, 283440, 535008, 990912, 1803882, 3232224, 5707624, 9943536, 17106960, 29088352, 48922320, 81438528, 134261584, 219336630, 355242288, 570675904, 909674688, 1439394192, 2261635168, 3529838208
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2018

Keywords

Crossrefs

1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), this sequence (b=3), A284286 (b=4), A319553 (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004404, A213384.

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^3))

Formula

Convolution inverse of A213384.
a(n) = (-1)^n * A004404(n).
a(0) = 1, a(n) = (6/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^3.

A216273 Triangle generated by Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k/n = log(1 + Sum_{n>=1} y*x^(n^2)), where coefficients are read by rows.

Original entry on oeis.org

1, 0, -1, 0, 0, 1, 4, 0, 0, -1, 0, -5, 0, 0, 1, 0, 0, 6, 0, 0, -1, 0, 0, 0, -7, 0, 0, 1, 0, -4, 0, 0, 8, 0, 0, -1, 9, 0, 9, 0, 0, -9, 0, 0, 1, 0, -10, 0, -15, 0, 0, 10, 0, 0, -1, 0, 0, 11, 0, 22, 0, 0, -11, 0, 0, 1, 0, 0, 4, -12, 0, -30, 0, 0, 12, 0, 0, -1, 0, -13, 0, -13, 13, 0, 39, 0, 0, -13, 0, 0, 1, 0, 0, 28, 0, 28, -14, 0, -49, 0, 0, 14, 0, 0, -1
Offset: 1

Views

Author

Paul D. Hanna, Mar 16 2013

Keywords

Examples

			G.f.: A(x,y) = y*x - y^2*x^2/2 + y^3*x^3/3 + (-y^4 + 4*y)*x^4/4 + (y^5 - 5*y^2)*x^5/5 + (-y^6 + 6*y^3)*x^6/6 + (y^7 - 7*y^4)*x^7/7 + (-y^8 + 8
*y^5 - 4*y^2)*x^8/8 + (y^9 - 9*y^6 + 9*y^3 + 9*y)*x^9/9 + (-y^10 + 10*y^7 - 15*y^4 - 10*y^2)*x^10/10 +...
where
exp(A(x,y)) = 1 + y*x + y*x^4 + y*x^9 + y*x^16 + y*x^25 +...
Triangle begins:
1;
0, -1;
0, 0, 1;
4, 0, 0, -1;
0, -5, 0, 0, 1;
0, 0, 6, 0, 0, -1;
0, 0, 0, -7, 0, 0, 1;
0, -4, 0, 0, 8, 0, 0, -1;
9, 0, 9, 0, 0, -9, 0, 0, 1;
0, -10, 0, -15, 0, 0, 10, 0, 0, -1;
0, 0, 11, 0, 22, 0, 0, -11, 0, 0, 1;
0, 0, 4, -12, 0, -30, 0, 0, 12, 0, 0, -1;
0, -13, 0, -13, 13, 0, 39, 0, 0, -13, 0, 0, 1;
0, 0, 28, 0, 28, -14, 0, -49, 0, 0, 14, 0, 0, -1;
0, 0, 0, -45, 0, -50, 15, 0, 60, 0, 0, -15, 0, 0, 1;
16, 0, 0, -4, 64, 0, 80, -16, 0, -72, 0, 0, 16, 0, 0, -1;
0, -17, 17, 0, 17, -85, 0, -119, 17, 0, 85, 0, 0, -17, 0, 0, 1;
0, -9, 18, -54, 0, -45, 108, 0, 168, -18, 0, -99, 0, 0, 18, 0, 0, -1;
0, 0, 19, -19, 114, 0, 95, -133, 0, -228, 19, 0, 114, 0, 0, -19, 0, 0, 1;
0, -20, 0, -30, 24, -200, 0, -175, 160, 0, 300, -20, 0, -130, 0, 0, 20, 0, 0, -1;
0, 0, 42, -21, 42, -42, 315, 0, 294, -189, 0, -385, 21, 0, 147, 0, 0, -21, 0, 0, 1;
0, 0, 22, -66, 88, -55, 88, -462, 0, -462, 220, 0, 484, -22, 0, -165, 0, 0, 22, 0, 0, -1;
0, 0, 0, -69, 92, -230, 69, -184, 644, 0, 690, -253, 0, -598, 23, 0, 184, 0, 0, -23, 0, 0, 1;
0, 0, 24, 0, 144, -124, 480, -84, 360, -864, 0, -990, 288, 0, 728, -24, 0, -204, 0, 0, 24, 0, 0, -1;
25, -25, 0, -75, 25, -250, 175, -875, 100, -655, 1125, 0, 1375, -325, 0, -875, 25, 0, 225, 0, 0, -25, 0, 0, 1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=n*polcoeff(polcoeff(log(1+sum(m=1,sqrtint(n)+1,y*x^(m^2))+x*O(x^n)),n,x),k,y)}
    for(n=1,25,for(k=1,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Alternate g.f., true for all m >= 0: */
    {T(n,k,m=0) = if(k<1||m<0,0, (n/k/binomial(k+m,m)) * polcoeff(polcoeff( 1 - 1/(1+sum(j=1,sqrtint(n+1),y*x^(j^2))+x*O(x^n))^(m+1), n,x),k,y))}
    for(n=1, 25, for(k=1, n, print1(T(n, k, 1), ", ")); print(""))

Formula

G.f.: Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k*k*binomial(k+m,m)/n = 1 - 1/(1 + Sum_{n>=1} y*x^(n^2))^(m+1), which holds for all m >= 0.
Row sums equal A162552.
Sum_{k=1..n} T(n,k)*2^k = -(-1)^n*(sigma(2*n) - sigma(n)) for n>=1, where sigma is the sum of divisors of n, A000203.
Sum_{k=1..n} T(n,k)*2^k*k = -(-1)^n*n*A015128(n) for n>=1, where A015128(n) is the number of overpartitions of n, with g.f.: Product_{n>=1} (1+x^n)/(1-x^n).
Sum_{k=1..n} T(n,k)*2^k*k*(k+1) = -(-1)^n*4*n*A002318(n) for n>=1, where A002318 lists the coefficients in (1/theta_4(q)^2 -1)/4 in powers of q.
Sum_{k=1..n} T(n,k)*2^k*k*(k+1)*(k+2)/2! = -n*A004404(n) for n>=1, where A004404 lists the coefficients in 1/(1 + Sum_{n>=1} 2*x^(n^2))^3.
Sum_{k=1..n} T(n,k)*2^k*k*(k+1)*(k+2)*(k+3)/3! = -n*A004405(n) for n>=1, where A004405 lists the coefficients in 1/(1 + Sum_{n>=1} 2*x^(n^2))^4.
More generally:
Sum_{k=1..n} T(n,k)*y^k*k*binomial(k+m,m)/n = [x^n] 1 - 1/(1 + Sum_{n>=1} y*x^(n^2))^(m+1) for m>=0, n>=1.
Showing 1-5 of 5 results.