A277636
Number of 3 X 3 matrices having all elements in {0,...,n} with determinant = permanent.
Original entry on oeis.org
1, 343, 6859, 50653, 226981, 753571, 2048383, 4826809, 10218313, 19902511, 36264691, 62570773, 103161709, 163667323, 251239591, 374805361, 545338513, 776151559, 1083206683, 1485446221, 2005142581, 2668267603, 3504881359, 4549540393, 5841725401, 7426288351
Offset: 0
Cf.
A059976 (Number of 3 X 3 singular matrices with all elements in {0,...,n})
Cf.
A015237 (Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent )
-
Vec((1 + 336*x + 4479*x^2 + 9808*x^3 + 4479*x^4 + 336*x^5 + x^6) / (1 - x)^7 + O(x^30)) \\ Colin Barker, Jan 02 2017
-
def a(n):
return 27*n**6-81*n**5+108*n**4-81*n**3+36*n**2-9*n+1
A280058
Number of 2 X 2 matrices with entries in {0,1,...,n} with determinant = permanent with no entries repeated.
Original entry on oeis.org
0, 0, 0, 12, 48, 120, 240, 420, 672, 1008, 1440, 1980, 2640, 3432, 4368, 5460, 6720, 8160, 9792, 11628, 13680, 15960, 18480, 21252, 24288, 27600, 31200, 35100, 39312, 43848, 48720, 53940, 59520, 65472, 71808, 78540, 85680, 93240, 101232, 109668, 118560
Offset: 0
-
Table[2*n*(n-1)*(n-2), {n, 0, 50}] (* G. C. Greubel, Dec 25 2016 *)
-
for(n=0, 50, print1(2*n*(n-1)*(n-2), ", ")) \\ G. C. Greubel, Dec 25 2016
-
a(n)=12*binomial(n,3) \\ Charles R Greathouse IV, Dec 25 2016
-
def t(n):
s=0
for a in range(0,n+1):
for b in range(0,n+1):
if a!=b:
for c in range(0,n+1):
if a!=c and b!=c:
for d in range(0,n+1):
if d!=a and d!=b and d!=c:
if (a*d-b*c)==(a*d+b*c):
s+=1
return s
for i in range(0,201):
print(str(i)+" "+str(t(i)))
-
a = lambda n: 2*n*(n-1)*(n-2) # David Radcliffe, Jun 14 2025
A280407
Number of 2 X 2 matrices with all elements in {-n,..,0,..,n} with permanent = determinant * n.
Original entry on oeis.org
1, 45, 81, 233, 289, 601, 625, 1113, 1153, 1785, 1681, 2761, 2401, 3577, 3505, 4665, 4225, 6185, 5329, 7673, 6945, 8601, 7921, 11033, 9665, 12265, 11793, 14089, 12769, 18073, 14641, 19945, 17281, 20121, 20593, 23961, 21025, 25417, 24177, 29177, 25921, 35449, 28561, 36233
Offset: 0
For n = 2, few of the possible matrices are [-2,-2,0,0], [-2,-1,0,0], [-2,0,-2,0], [-2,0,-1,0], [-2,0,0,0], [-2,0,1,0], [-2,0,2,0], [1,0,0,0], [1,0,1,0], [1,0,2,0], [1,1,0,0], [1,2,0,0], [2,-2,0,0], [2,-1,0,0], [2,0,-2,0], .... There are 81 possibilities. Here each of the matrices is defined as M = [a,b,c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So for n = 2, a(2)=81.
Number of 2 X 2 matrices with all elements in {0,..,n}:
A280391 (permanent = determinant * n),
A280321 (determinant = permanent * n),
A015237 (determinant = permanent) and
A016754 (determinant = 2* permanent).
-
def t(n):
s=0
for a in range(-n,n+1):
for b in range(-n,n+1):
for c in range(-n,n+1):
for d in range(-n,n+1):
if (a*d-b*c)*n==(a*d+b*c):
s+=1
return s
for i in range(0,156):
print(t(i))
-
import numpy as np
def a280417(N):
if N > 0: yield 1
if N > 1: yield 45
if N <= 2: return
prods = np.zeros(N * N, dtype=np.int32)
prods[1] = 1 # prods[k] counts integer solutions to x*y = k with 1 <= x,y <= n
for n in range(2, N):
n_sq = n * n
prods[n: n_sq: n] += 2
prods[n_sq] += 1
dx = (n + 1) // 2 if n % 2 else n + 1
dy = (n - 1) // 2 if n % 2 else n - 1
ad = prods[dx : n_sq : dx]
bc = prods[dy : dy * ad.shape[0] + 1 : dy]
yield (4 * n + 1) ** 2 + 8 * int(ad @ bc)
# (4*n+1)**2 = solutions to a*d = b*c = 0 with -n <= a,b <= n.
# ad @ bc = solutions to (n-1)*a*d = (n+1)*b*c > 0 with 1 <= a,b <= n.
# Multiply by 8 to account for all consistent sign changes of a,b,c,d.
print(list(a280417(44))) # David Radcliffe, May 22 2025
A357042
The sum of the numbers of the central diamond of the multiplication table [1..k] X [1..k] for k=2*n-1.
Original entry on oeis.org
1, 20, 117, 400, 1025, 2196, 4165, 7232, 11745, 18100, 26741, 38160, 52897, 71540, 94725, 123136, 157505, 198612, 247285, 304400, 370881, 447700, 535877, 636480, 750625, 879476, 1024245, 1186192, 1366625, 1566900, 1788421, 2032640, 2301057, 2595220, 2916725, 3267216, 3648385
Offset: 1
In the multiplication table [1..3] X [1..3]: a(2) = 2+2+4+6+6 = 20;
In the multiplication table [1..5] X [1..5]: a(3) = 3+4+3+6+6+8+9+8+12+12+15+16+15 = 117.
For n=3, the multiplication table [1..5] X [1..5] and the terms summed are
* 1 2 3 4 5
-----------------
1| 3
2| 4 6 8
3| 3 6 9 12 15
4| 8 12 16
5| 15
-
A357042[n_] := n^2*(2*(n-1)*n + 1); Array[A357042, 50] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 20, 117, 400, 1025}, 50] (* Paolo Xausa, Oct 03 2024 *)
A192418
Molecular topological indices of the complete bipartite graphs K_{n,n}.
Original entry on oeis.org
4, 48, 180, 448, 900, 1584, 2548, 3840, 5508, 7600, 10164, 13248, 16900, 21168, 26100, 31744, 38148, 45360, 53428, 62400, 72324, 83248, 95220, 108288, 122500, 137904, 154548, 172480, 191748, 212400
Offset: 1
-
Table[4n^2(2n-1),{n,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{4,48,180,448},30] (* Harvey P. Dale, Apr 08 2018 *)
Comments