cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A161999 For n even a(n) = a(n-1) + 10*a(n-2), for n odd a(n) = a(n-3) + 10 a(n-2); with a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 1, 1, 10, 20, 101, 301, 1030, 4040, 10601, 51001, 110050, 620060, 1151501, 7352101, 12135070, 85656080, 128702801, 985263601, 1372684090, 11225320100, 14712104501, 126965305501, 158346365110, 1427999420120
Offset: 1

Views

Author

Mark Dols, Jun 24 2009, Jun 28 2009, Jul 13 2009

Keywords

Examples

			As pairs:
0, 1
1, 10
20, 101
301, 1030
4040, 10601
51001, 110050
620060, 1151501
7352101, 12135070
85656080, 128702801
		

Crossrefs

Combination of A081192 and A016190. Triangle A007318 (even /uneven rows). Partly same function as A015446. A001020 (as sum of pairs of 2n).A001019 (as difference of pairs of 2n)
Cf. A162849.

Programs

  • Mathematica
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,If[OddQ[n],c+10b,a+10b]}; NestList[nxt,{2,0,1,1},30][[All,2]] (* or *) LinearRecurrence[{0,20,0,-99},{0,1,1,10},30] (* Harvey P. Dale, May 03 2018 *)

Formula

a(n)=20*a(n-2)-99*a(n-4). G.f.: -x^2*(-1-x+10*x^2)/((3*x-1)*(3*x+1)*(11*x^2-1)). [From R. J. Mathar, Jul 13 2009]

Extensions

Edited by N. J. A. Sloane, Jun 30 2009
NAME adapted to offset. - R. J. Mathar, Jun 19 2021

A317054 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 10 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 10, 1, 20, 1, 30, 100, 1, 40, 300, 1, 50, 600, 1000, 1, 60, 1000, 4000, 1, 70, 1500, 10000, 10000, 1, 80, 2100, 20000, 50000, 1, 90, 2800, 35000, 150000, 100000, 1, 100, 3600, 56000, 350000, 600000, 1, 110, 4500, 84000, 700000, 2100000, 1000000, 1, 120, 5500, 120000, 1260000, 5600000, 7000000
Offset: 0

Views

Author

Zagros Lalo, Jul 20 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013617 ((1+10x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038303 ((10+x)^n).
The coefficients in the expansion of 1/(1-x-10*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015446).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.701562118716424343244... ((1+sqrt(41))/2), when n approaches infinity.

Examples

			Triangle begins:
  1;
  1;
  1, 10;
  1, 20;
  1, 30, 100;
  1, 40, 300;
  1, 50, 600, 1000;
  1, 60, 1000, 4000;
  1, 70, 1500, 10000, 10000;
  1, 80, 2100, 20000, 50000;
  1, 90, 2800, 35000, 150000, 100000;
  1, 100, 3600, 56000, 350000, 600000;
  1, 110, 4500, 84000, 700000, 2100000, 1000000;
  1, 120, 5500, 120000, 1260000, 5600000, 7000000;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 102.

Crossrefs

Row sums give A015446.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 10 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[10^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1, k)+10*T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A162671 For n even a(n) = a(n-1) + a(n-2), for n odd a(n) = 100*a(n-1) + a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 101, 102, 10301, 10403, 1050601, 1061004, 107151001, 108212005, 10928351501, 11036563506, 1114584702101, 1125621265607, 113676711262801, 114802332528408, 11593909964103601, 11708712296632009, 1182465139627304501, 1194173851923936510, 120599850332020955501
Offset: 0

Views

Author

Mark Dols, Jul 10 2009

Keywords

Crossrefs

Partly same as A041059 (and its palindromic partner-sequence A015446). A007318.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<2, n, a(n-1)*(1+99*(n mod 2))+a(n-2)) end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Jan 20 2025
  • Mathematica
    LinearRecurrence[{0,102,0,-1},{1,1,101,102},20] (* Harvey P. Dale, May 08 2020 *)

Formula

a(n) = 102*a(n-2)-a(n-4). G.f.: x*(1+x-x^2)/((x^2+10*x-1)*(x^2-10*x-1)). - R. J. Mathar, Jul 14 2009

Extensions

More terms from R. J. Mathar, Jul 14 2009

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A164827 Generalized Lucas numbers: a(n) = a(n-1) + 10*a(n-2); with a(1)=2 a(2)=1.

Original entry on oeis.org

2, 1, 21, 31, 241, 551, 2961, 8471, 38081, 122791, 503601, 1731511, 6767521, 24082631, 91757841, 332584151, 1250162561, 4576004071, 17077629681, 62837670391, 233613967201, 861990671111, 3198130343121, 11818037054231
Offset: 1

Views

Author

Mark Dols, Aug 27 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,10},{2,1},30] (* Harvey P. Dale, Apr 07 2015 *)

Formula

G.f.: x*(2-x)/(1-x-10*x^2). - Colin Barker, Jun 17 2012
a(n) = a(n-1) + 10*a(n-2); a(1)=2, a(2)=1. - Harvey P. Dale, Apr 07 2015
a(n) = 2*A015446(n-1) - A015446(n-2). - R. J. Mathar, Oct 08 2016
Previous Showing 11-15 of 15 results.