A015544
Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015441,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A015555 (binomial transform).
-
[n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
-
x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Original entry on oeis.org
1, 2, 1, 10, 9, 2, 50, 65, 28, 4, 250, 425, 270, 76, 8, 1250, 2625, 2200, 920, 192, 16, 6250, 15625, 16250, 9000, 2800, 464, 32, 31250, 90625, 112500, 77500, 32000, 7920, 1088, 64, 156250, 515625, 743750, 612500, 315000, 103600, 21280, 2496, 128
Offset: 0
First six rows:
1;
2, 1;
10, 9, 2;
50, 65, 28, 4;
250, 425, 270, 76, 8;
1250, 2625, 2200, 920, 192; 16;
-
function T(n, k) // T = A193727
if k lt 0 or k gt n then return 0;
elif n lt 2 then return n-k+1;
else return 5*T(n-1, k) + 2*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
-
(* First program *)
z = 8; a = 1; b = 2; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193726 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193727 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 5*T[n-1, k] + 2*T[n-1, k-1]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
-
def T(n, k): # T = A193727
if (k<0 or k>n): return 0
elif (n<2): return n-k+1
else: return 5*T(n-1, k) + 2*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023
A233020
Number of n X 2 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, vertically, diagonally or antidiagonally, and top left element zero.
Original entry on oeis.org
3, 15, 81, 435, 2337, 12555, 67449, 362355, 1946673, 10458075, 56183721, 301834755, 1621541217, 8711375595, 46799960409, 251422553235, 1350712686993, 7256408541435, 38983468081161, 209430157488675, 1125117723605697
Offset: 1
Some solutions for n=5:
..0..2....0..0....0..0....0..1....0..0....0..0....0..1....0..2....0..0....0..0
..2..2....1..1....2..2....1..1....1..1....0..2....0..1....2..0....1..1....0..0
..3..2....1..1....2..3....0..0....0..0....2..2....0..1....2..0....1..1....1..1
..3..2....1..3....3..3....2..2....1..1....2..3....0..1....0..2....3..3....3..1
..2..3....3..3....3..2....0..0....3..1....2..3....0..1....0..2....2..3....3..1
A201002
Primes in the Lucas U(5,-2) sequence.
Original entry on oeis.org
5, 22483, 450237562331, 12994489360387, 260223602644254517259, 7510419207086038206643, 3615797716913419563139283609508083, 2089820990182844019889959238674869772826787
Offset: 1
A106835
Expansion of 2*x^2*(-2+9*x+3*x^2)/((2*x^2+5*x-1)*(2*x^2-5*x+1)).
Original entry on oeis.org
0, 4, 22, 114, 590, 3066, 15998, 83786, 440270, 2320314, 12260382, 64931114, 344562670, 1831630106, 9751275838, 51981730186, 277413656590, 1481919831674, 7922862005342, 42388551182314, 226923616315950, 1215450062928346
Offset: 1
-
M = {{0, 0, 0, 2}, {1, 5, 0, 0}, {0, 2, 0, 0}, {0, 0, 1, 5}};
v[1] = {0, 1, 1, 2};
v[n_] := v[n] = M.v[n - 1];
a = Table[v[n][[1]], {n, 1, 50}]
LinearRecurrence[{10,-25,0,4},{0,4,22,114},30] (* Harvey P. Dale, Jul 05 2025 *)
Edited by Associate Editors of the OEIS, Apr 05 2009
A321045
a(n) is the value of the first entry in the matrix A^n where A = [{1,2,3}, {4,5,6}, {7,8,9}].
Original entry on oeis.org
1, 1, 30, 468, 7560, 121824, 1963440, 31644432, 510008400, 8219725776, 132476037840, 2135095631568, 34411003154640, 554596768687824, 8938349587100880, 144057985642894032, 2321760077211226320, 37419444899740487376, 603083354885909384400, 9719800331483969538768
Offset: 0
-
a(n) = ([1,2,3; 4,5,6; 7,8,9]^n)[1,1]; \\ Michel Marcus, Oct 26 2018
Comments