A351157 Number of symmetric 0-1 matrices with zero main diagonal where rows are sorted lexicographically and row sums are nondecreasing.
1, 2, 4, 11, 33, 145, 839, 7449
Offset: 1
Crossrefs
Cf. A016121
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
T[n_, k_]:= T[n, k]= If[n<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] + Sum[T[n-1,j]*T[j,k-1], {j,0,n-1}] ]]; (* T=A097712 *) A097713[n_]:= T[n,1]; Table[A097713[n], {n,30}] (* G. C. Greubel, Feb 22 2024 *)
@CachedFunction def T(n, k): # T = A097712 if k<0 or k>n: return 0 elif k==0 or k==n: return 1 else: return T(n-1, k) + sum(T(n-1, j)*T(j, k-1) for j in range(n)) def A097713(n): return T(n,1) [A097713(n) for n in range(1,31)] # G. C. Greubel, Feb 22 2024
For a(0) we get two possible sequences: {0}, {1}. For a(1) we get three possible sequences: {0, 0}, {0, 1}, {1, 1}. For a(2) = 7 we get: {0, 0, 0}, {0, 0, 1}, {0, 0, 2}, {0, 1, 1}, {0, 1, 2}, {1, 1, 1}, {1, 1, 2}.
a(n) = binomial((n-1)! + n-1, n-1) + binomial((n-1)! + n-2, n-1) + sum(r = 1, n-2, sum(k = 0, r-1 ,binomial((n-1)! - r! - k+n - 2, n-1)*binomial(r-1,k)*a(r)*(-1)^(k+1)))
Comments