cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A016787 a(n) = (3*n + 1)^11.

Original entry on oeis.org

1, 4194304, 1977326743, 100000000000, 1792160394037, 17592186044416, 116490258898219, 584318301411328, 2384185791015625, 8293509467471872, 25408476896404831, 70188843638032384, 177917621779460413, 419430400000000000, 929293739471222707, 1951354384207722496
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^11: n in [0..20]]; // Vincenzo Librandi, Sep 29 2011
  • Mathematica
    Table[(3*n + 1)^11, {n, 0, 30}] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016777(n)^11.
Sum_{n>=0} 1/a(n) = 7388*Pi^11/(2511058725*sqrt(3)) + 88573*zeta(11)/177147. (End)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12). - Wesley Ivan Hurt, Apr 12 2023

A118719 Cubes for which the digital root is also a cube.

Original entry on oeis.org

0, 1, 8, 64, 125, 343, 512, 1000, 1331, 2197, 2744, 4096, 4913, 6859, 8000, 10648, 12167, 15625, 17576, 21952, 24389, 29791, 32768, 39304, 42875, 50653, 54872, 64000, 68921, 79507, 85184, 97336, 103823, 117649, 125000, 140608, 148877
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 21 2006

Keywords

Comments

All cubes have a digital root 1,8 or 9. (except for the number 0) So this sequence contains all cubes with a digital root which is not 9.
This sequence is 0 union A016779 union A016791.

Examples

			64 is in the sequence because (1) it is a cube and (2) the digital root 1 is also a cube.
		

Crossrefs

Programs

  • Magma
    [0] cat [(6*n+(-1)^n-9)^3 div 64: n in [2..37]];  // Bruno Berselli, May 05 2011
    
  • Mathematica
    Join[{0}, Table[(3*k + {1, 2})^3, {k, 0, 15}] // Flatten] (* Amiram Eldar, Dec 19 2020 *)
  • PARI
    a010888(n)=if(n, (n-1)%9+1)
    lista(nn) = {for (n=0, nn, if (ispower(a010888(n^3), 3), print1(n^3, ", ")););} \\ Michel Marcus, Feb 18 2015

Formula

a(n) = (floor(3*n/2)-2)^3 for n >= 2. - Nathaniel Johnston, May 05 2011
G.f.: x^2*(1+7*x+53*x^2+40*x^3+53*x^4+7*x^5+x^6)/((1+x)^3*(1-x)^4). a(n) = A001651(n-1)^3 for n>1. - Bruno Berselli, May 05 2011
Sum_{n>=2} 1/a(n) = 26*zeta(3)/27. - Amiram Eldar, Dec 19 2020

A016786 a(n) = (3*n+1)^10.

Original entry on oeis.org

1, 1048576, 282475249, 10000000000, 137858491849, 1099511627776, 6131066257801, 26559922791424, 95367431640625, 296196766695424, 819628286980801, 2064377754059776, 4808584372417849, 10485760000000000, 21611482313284249, 42420747482776576, 79792266297612001
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^10: n in [0..20]]; // Vincenzo Librandi, Sep 29 2011
  • Mathematica
    Table[(3n+1)^10,{n,0,100}] (* Mohammad K. Azarian, Jun 15 2016 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,1048576,282475249,10000000000,137858491849,1099511627776,6131066257801,26559922791424,95367431640625,296196766695424,819628286980801},20] (* Harvey P. Dale, May 14 2019 *)

Formula

a(n) = A008454(A016777(n)). - Michel Marcus, Jun 15 2016
Sum_{n>=0} 1/a(n) = PolyGamma(9, 1/3)/21427701120. - Amiram Eldar, Mar 29 2022

A377557 Decimal expansion of 2*Pi^3/(81*sqrt(3)) + 13*zeta(3)/27.

Original entry on oeis.org

1, 0, 2, 0, 7, 8, 0, 0, 4, 4, 4, 3, 3, 3, 6, 3, 1, 0, 2, 8, 2, 3, 2, 5, 4, 7, 3, 9, 9, 0, 3, 9, 8, 1, 8, 2, 5, 3, 5, 3, 4, 1, 0, 9, 3, 7, 5, 1, 9, 0, 6, 9, 6, 6, 9, 7, 3, 5, 7, 2, 0, 7, 5, 2, 5, 3, 9, 1, 4, 6, 5, 9, 9, 2, 6, 5, 6, 2, 7, 1, 5, 5, 4, 4, 9, 8, 0, 6, 7, 2, 0, 3, 4, 2, 6, 7, 6, 1, 3, 7
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.0207800444333631028232547399039818253534109375...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[2Pi^3/(81Sqrt[3])+13Zeta[3]/27,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(3*k + 1)^3 (see Finch).
Equals -psi''(1/3)/54 (see Shamos).
Equals hypergeom([1/3, 1/3, 1/3, 1], [4/3, 4/3, 4/3], 1). - R. J. Mathar, Jul 14 2025

A016788 a(n) = (3*n+1)^12.

Original entry on oeis.org

1, 16777216, 13841287201, 1000000000000, 23298085122481, 281474976710656, 2213314919066161, 12855002631049216, 59604644775390625, 232218265089212416, 787662783788549761, 2386420683693101056, 6582952005840035281, 16777216000000000000, 39959630797262576401
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A008456(A016777(n)). - Michel Marcus, Jun 16 2016
Sum_{n>=0} 1/a(n) = PolyGamma(11, 1/3)/21213424108800. - Amiram Eldar, Mar 30 2022

A017199 a(n) = (9*n + 3)^3.

Original entry on oeis.org

27, 1728, 9261, 27000, 59319, 110592, 185193, 287496, 421875, 592704, 804357, 1061208, 1367631, 1728000, 2146689, 2628072, 3176523, 3796416, 4492125, 5268024, 6128487, 7077888, 8120601, 9261000, 10503459, 11852352, 13312053, 14886936, 16581375, 18399744, 20346417
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(9*n+3)^3: n in [0..30]]; // Vincenzo Librandi, Jul 23 2011
  • Mathematica
    (9Range[0,30]+3)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{27,1728,9261,27000},30] (* Harvey P. Dale, Jun 20 2024 *)

Formula

G.f.: 27*(1 + 60*x + 93*x^2 + 8*x^3)/ (x-1)^4. - R. J. Mathar, Aug 01 2014
a(n) = 27*A016779(n). - R. J. Mathar, Aug 01 2014
From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^3.
Sum_{n>=0} 1/a(n) = 2*Pi^3/(2187*sqrt(3)) + 13*zeta(3)/729. (End)

A017571 a(n) = (12n+4)^3.

Original entry on oeis.org

64, 4096, 21952, 64000, 140608, 262144, 438976, 681472, 1000000, 1404928, 1906624, 2515456, 3241792, 4096000, 5088448, 6229504, 7529536, 8998912, 10648000, 12487168, 14526784, 16777216, 19248832, 21952000, 24897088, 28094464, 31554496, 35287552, 39304000, 43614208
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (12*n+4)^3; Array[a, 30, 0] (* Amiram Eldar, Jul 14 2024 *)
    LinearRecurrence[{4,-6,4,-1},{64,4096,21952,64000},30] (* Harvey P. Dale, Sep 06 2024 *)

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A000578(A017569(n)) = A017569(n)^3.
a(n) = 64 * A016779(n).
Sum_{n>=0} 1/a(n) = Pi^3/(2592*sqrt(3)) + 13*zeta(3)/1728. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024

A229212 Square array of numerators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.

Original entry on oeis.org

2, 3, 9, 4, 25, 64, 5, 49, 343, 625, 6, 81, 1000, 6561, 7776, 7, 121, 2197, 28561, 161051, 117649, 8, 169, 4096, 83521, 1048576, 4826809, 2097152, 9, 225, 6859, 194481, 4084101, 47045881, 170859375, 43046721, 10, 289
Offset: 1

Views

Author

Jean-François Alcover, Sep 16 2013

Keywords

Comments

Limit(t(n,k), n -> infinity) = exp(1/k).
1st row = A020725
2nd row = A016754
3rd row = A016779
4th row = A016816
5th row = A016865
1st column = A000169
2nd column = A085527

Examples

			Table of fractions begins:
   2,       3/2,        4/3,         5/4, ...
  9/4,     25/16,      49/36,       81/64, ...
64/27,   343/216,   1000/729,    2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of numerators begins:
2,      3,     4,     5, ...
9,     25,    49,    81, ...
64,   343,  1000,  2197, ...
625, 6561, 28561, 83521, ...
...
Triangle of antidiagonals begins:
2;
3, 9;
4, 25, 64;
5, 49, 343, 625;
...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Numerator
Previous Showing 11-18 of 18 results.