cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A017361 a(n) = (10*n + 7)^9.

Original entry on oeis.org

40353607, 118587876497, 7625597484987, 129961739795077, 1119130473102767, 6351461955384057, 27206534396294947, 95151694449171437, 285544154243029527, 760231058654565217, 1838459212420154507, 4108400332687853397
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017353 (10n+7), A001017 (n^9).

Programs

  • Magma
    [(10*n+7)^9: n in [0..20]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    (10*Range[0,30]+7)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{40353607,118587876497,7625597484987,129961739795077,1119130473102767,6351461955384057,27206534396294947,95151694449171437,285544154243029527,760231058654565217},30] (* Harvey P. Dale, Dec 28 2011 *)
  • PARI
    vector(20, n, n--; (10*n+7)^9) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10); a(0)=40353607, a(1)=118587876497, a(2)=7625597484987, a(3)=129961739795077, a(4)=1119130473102767, a(5)=6351461955384057, a(6)=27206534396294947, a(7)=95151694449171437, a(8)=285544154243029527, a(9)=760231058654565217. - Harvey P. Dale, Dec 28 2011

A017362 a(n) = (10*n + 7)^10.

Original entry on oeis.org

282475249, 2015993900449, 205891132094649, 4808584372417849, 52599132235830049, 362033331456891249, 1822837804551761449, 7326680472586200649, 24842341419143568849, 73742412689492826049
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017353 (10n+7), A008454 (n^10).

Programs

A032588 Lucky numbers ending with digit 7.

Original entry on oeis.org

7, 37, 67, 87, 127, 237, 267, 297, 307, 327, 357, 367, 427, 477, 487, 517, 537, 577, 717, 727, 777, 787, 867, 897, 927, 937, 957, 997, 1057, 1087, 1107, 1117, 1147, 1167, 1197, 1357, 1387, 1417, 1497, 1567, 1587, 1597, 1737, 1767, 1777, 1797, 1827, 1857
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Comments

Also, lucky numbers (A000959) which are congruent to 2 mod 5 (because only numbers ending in 2 could make a difference, but these are removed in the 1st step of the lucky sieve). - R. J. Mathar, Apr 29 2008

Crossrefs

Intersection of A000959 and A017353.

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar

A053180 Numbers ending in 7 which are not prime.

Original entry on oeis.org

27, 57, 77, 87, 117, 147, 177, 187, 207, 217, 237, 247, 267, 287, 297, 327, 357, 377, 387, 407, 417, 427, 437, 447, 477, 497, 507, 517, 527, 537, 567, 597, 627, 637, 657, 667, 687, 697, 707, 717, 737, 747, 767, 777, 807, 817, 837, 847, 867, 897, 917, 927
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Crossrefs

Intersection of A002808 (composites) and A017353 (ending with 7). - Michel Marcus, Sep 04 2018

Programs

  • Mathematica
    Select[Range[7,1000,10],!PrimeQ[#]&] (* Harvey P. Dale, Nov 03 2013 *)

A152579 a(n) = (10*n+3)*(10*n+17).

Original entry on oeis.org

51, 351, 851, 1551, 2451, 3551, 4851, 6351, 8051, 9951, 12051, 14351, 16851, 19551, 22451, 25551, 28851, 32351, 36051, 39951, 44051, 48351, 52851, 57551, 62451, 67551, 72851, 78351, 84051, 89951, 96051, 102351, 108851, 115551, 122451, 129551, 136851, 144351, 152051, 159951
Offset: 0

Views

Author

Paul Curtz, Dec 08 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 100*n*(n+2) + 51 = 100*A005563(n) + 51 = 100*(n+1)^2 - 49 = A017270(n+1) - 49.
a(n) = 2*a(n-2) - a(n-2) + 200.
a(n) = 50*A056220(n+1) + 1.
a(n+1) - a(n) = 200*n + 300 = 100*A144396(n+1).
G.f.: (-51 - 198*x + 49*x^2)/(x-1)^3. - R. J. Mathar, Jul 01 2011
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(51 + 300*x + 100*x^2).
a(n) = A017305(n)*A017353(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A154412 Primes of the form 10n^2+14n+5, n >= 0.

Original entry on oeis.org

5, 29, 73, 137, 449, 593, 757, 941, 1613, 1877, 2161, 2789, 3881, 5153, 6101, 7129, 7673, 8237, 8821, 12041, 13469, 15761, 17389, 18233, 26729, 27773, 28837, 29921, 34457, 38069, 39313, 40577, 45833, 60373, 63521, 66749, 71741, 75169, 76913
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 10*n^2+14*n+5]; // Vincenzo Librandi, Jul 23 2012
    
  • Mathematica
    Select[Table[10n^2+14n+5,{n,0,200}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    {for(n=0, 100, if(isprime(k=10*n^2+14*n+5), print1(k, ", ")))}; \\ Vincenzo Librandi, Jul 23 2012

Extensions

Corrected by Don Reble, Jun 16 2010

A168458 a(n) = 7 + 10*floor((n-1)/2).

Original entry on oeis.org

7, 7, 17, 17, 27, 27, 37, 37, 47, 47, 57, 57, 67, 67, 77, 77, 87, 87, 97, 97, 107, 107, 117, 117, 127, 127, 137, 137, 147, 147, 157, 157, 167, 167, 177, 177, 187, 187, 197, 197, 207, 207, 217, 217, 227, 227, 237, 237, 247, 247, 257, 257, 267, 267, 277, 277, 287
Offset: 1

Views

Author

Vincenzo Librandi, Nov 26 2009

Keywords

Crossrefs

Cf. A017353.

Programs

  • Magma
    [7+10*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi Sep 19 2013
  • Maple
    A168458:=n->7 + 10*floor((n-1)/2); seq(A168458(k), k=1..100); # Wesley Ivan Hurt, Nov 08 2013
  • Mathematica
    Table[7 + 10 Floor[(n - 1)/2], {n, 70}] (* or *) CoefficientList[Series[(7 + 3 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
    LinearRecurrence[{1,1,-1},{7,7,17},60] (* Harvey P. Dale, Apr 12 2018 *)

Formula

a(n) = 10*n - a(n-1) - 6, with n>1, a(1)=7.
G.f.: x*(7 + 3*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
From G. C. Greubel, Jul 23 2016: (Start)
a(n) = (10*n - 5*(-1)^n - 1)/2.
E.g.f.: (1/2)*(-5 + 6*exp(x) + (10*x - 1)*exp(2*x))*exp(-x). (End)

Extensions

New definition by Vincenzo Librandi, Sep 19 2013

A268867 Number of integers of the form m^2+1 between two consecutive pairs of primes of the same form.

Original entry on oeis.org

0, 7, 7, 27, 67, 77, 177, 77, 167, 7, 67, 377, 47, 27, 67, 27, 37, 57, 187, 47, 57, 7, 277, 87, 27, 7, 307, 47, 77, 127, 167, 87, 207, 167, 227, 217, 17, 247, 127, 17, 187, 237, 7, 117, 47, 7, 157, 57, 37, 197, 217, 87, 17, 137, 147, 287, 67, 547, 37, 187, 787
Offset: 1

Views

Author

Michel Lagneau, Feb 15 2016

Keywords

Comments

Or number of integers of the form m^2+1 between two consecutive twin k^2+1 primes.
a(n)==7 mod 10 for n>1.
The primes of the sequence are 7, 17, 37, … (A030432), subsequence of A017353.
Conjecture 1: the sequence is infinite.
Conjecture 2: for n>1, the sequence sorted in ascending order with distinct values generates the set B = {b(k)} = {7, 17, 27, 37, …} = {7 + 10k}, k = 0,1,2,… and {a(n)}/qZ = B/qZ with q = 2^m, m = 1, 2,… is a multiplicative group.
This has been verified for n up to 10^8.
A remarkable simple way to perceive properties of invariability in this sequence (or other particular sequences) is the use of finite groups of integers modulo q. This study can provide interesting interpretations for some regularities which describe properties in other mathematical spaces.
However, this concept is based on a conjecture if it is impossible to prove the infinity character of a sequence. This requires, for the calculations, a large number of elements in the sequence.
The groups of integers modulo 2^m are:
q = 2 => B/2Z = {1}, the trivial group.
q = 4 => B/4Z = {1,3}, the cyclic group of order 2 with two elements.
q = 8 => B/8Z = {1,3,5,7}, the group of order 4 with generating set {3,7} => the Klein four-group of order 2. The square of each element of B/8Z is 1. The group is not cyclic.
q = 16 => B/16Z = {1,3,5,7,9,11,13,15}, the group of order 8 with generating set {3,15}. The powers of 3 {1,3,9,11} are a subgroup of order 4, as are the powers of 5, {1,5,9,13}. The group B/16Z is not cyclic.
For higher powers q = 2^k, k>2, B/(2^k)Z = {1,3,5,…,2^k-1}, with generating set {3, 2^k-1}. The group B/(2^k)Z is not cyclic.
The order of the group is given by Euler’s totient function (A000010): this is the product of the orders of the cyclic groups in the direct product (see the links).

Examples

			a(1)=0 because there exists 0 number of the form m^2+1 between the two consecutive pairs of primes(2^2+1, 4^2+1) and (4^2+1, 6^2+1);
a(2) = 7 because there exists 7 numbers of the form m^2+1 between the two consecutive pairs of primes(4^2+1, 6^2+1) and (14^2+1, 16^2+1): 50, 65, 82, 101, 122, 145 and 170.
		

Crossrefs

Programs

  • Maple
    nn:=10000:T:=array(1..200):kk:=0:
    for n from 4 by 2 to nn do:
       p1:=n^2+1:p2:=(n+2)^2+1:
        if isprime(p1) and isprime(p2)
         then
         kk:=kk+1:T[kk]:=n:
         else
        fi:
      od:
        for m from 1 to kk-1 do:
          q:=T[m+1]-T[m]-3:printf(`%d, `,q):
        od:
  • Mathematica
    lst={};Do[If[PrimeQ[n^2+1],AppendTo[lst,n]],{n,1,10000}];Module[{tr=Transpose[Select[Partition[lst,2,1],#[[2]]-#[[1]]==2&]],fir,las},fir=Rest[tr[[1]]];las=Most[tr[[2]]];Flatten[Abs[Differences/@Thread[{fir,las}]]]-1/.{-1->0}]

A160912 [1, 3, 5, 7, ...] convolved with [1, 4, 0, 0, 0, ...].

Original entry on oeis.org

1, 7, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177, 187, 197, 207, 217, 227, 237, 247, 257, 267, 277, 287, 297, 307, 317, 327, 337, 347, 357, 367, 377, 387, 397, 407, 417, 427, 437, 447
Offset: 1

Views

Author

Gary W. Adamson, May 30 2009

Keywords

Examples

			a(3) = 17 = (5, 3, 1) * (1, 4, 0) = (5 + 12 + 0).
		

Crossrefs

Essentially a duplicate of A017353.

Programs

  • Mathematica
    Table[ListConvolve[Range[1,2n-1,2],PadRight[{1,4},n,0]],{n,50}]//Flatten (* or *) Join[{1},Range[7,450,10]] (* or *) LinearRecurrence[{2,-1},{1,7,17},50] (* Harvey P. Dale, Apr 28 2018 *)

Formula

Odd integers convolved with [1, 4, 0, 0, 0, ...].

Extensions

More terms from N. J. A. Sloane, May 31 2009

A270968 Reduced 5x+1 function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (5k+1)/2^r, with r as large as possible.

Original entry on oeis.org

3, 1, 13, 9, 23, 7, 33, 19, 43, 3, 53, 29, 63, 17, 73, 39, 83, 11, 93, 49, 103, 27, 113, 59, 123, 1, 133, 69, 143, 37, 153, 79, 163, 21, 173, 89, 183, 47, 193, 99, 203, 13, 213, 109, 223, 57, 233, 119, 243, 31, 253, 129, 263, 67, 273, 139, 283, 9, 293, 149, 303
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2016

Keywords

Comments

The odd-indexed terms a(2i+1) = 10i+3 = A017305(i), i>=0;
a(4i+4) = 10i+9 = A017377(i), i>=0;
a(8i+6) = 10i+7 = A017353(i), i>=0;
a(16i+2) = 10i+1 = A017281(i), i>=0.
Note that a(n) = a(16n-6) = a(6n-2)/3. No multiple of 5 is in this sequence.
a(n) = R(2n-1) < 2n-1 for n = 2, 6, 10, ..., 2+4i,...

Examples

			a(4)=9 because (2*4-1) = 7  -> (5*7+1)/2^2 = 9.
		

Crossrefs

Programs

  • Mathematica
    nextOddK[n_] := Module[{m=5n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
  • PARI
    a(n) = my(m = 2*n-1, c = 5*m+1); c/2^valuation(c, 2); \\ Michel Marcus, Mar 27 2016

Formula

a(n) = A000265(A017341(n-1)). - Michel Marcus, Mar 27 2016
Previous Showing 11-20 of 21 results. Next