cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A017483 a(n) = (11*n + 7)^11.

Original entry on oeis.org

1977326743, 64268410079232, 12200509765705829, 419430400000000000, 6071163615208263051, 52036560683837093888, 313726685568359708377, 1469170321634239709184, 5688000922764599609375, 18982985583354248390656, 56239892154164025151533, 151115727451828646838272
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), this sequence (m=11), A017484 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1977326743 +64244682158316*x +11429419348320083*x^2 + 277265562864875904*x^3 +1829094388304154510*x^4 +4212702849829094280*x^5 +3698421546351487230*x^6 +1221731311784947392*x^7 +134444370899578971* x^8 +3566547693499340*x^9 +8649705527727*x^10 +4194304*x^11)/(1-x)^12.
E.g.f.: (1977326743 +64266432752489*x +6035987461437054*x^2 + 63836945659298911*x^3 +186099500089146160*x^4 +214611357085098248*x^5 + 117178874627032680*x^6 +33290649534885897*x^7 +5128288643417445*x^8 + 425762824825415*x^9 +17689323577882*x^10 +285311670611*x^11)*exp(x). (End)

A017484 a(n) = (11*n + 7)^12.

Original entry on oeis.org

13841287201, 1156831381426176, 353814783205469041, 16777216000000000000, 309629344375621415601, 3226266762397899821056, 22902048046490258711521, 123410307017276135571456, 540360087662636962890625, 2012196471835550329409536, 6580067382037190942729361
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), this sequence (m=12)

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (13841287201 +1156651444692563*x +338777054867330431*x^2 + 12267852707472004709*x^3 +118792245587080463178*x^4 + 409344222142040360670*x^5 +564873972371695167390*x^6 + 320832301424673327498*x^7 +71415318201137477061*x^8 + 5352495778795351967*x^9 +93742255577726899*x^10 129746119786817*x^11 - 16777216*x^12)/(1-x)^13.
E.g.f.: (13841287201 +1156817540138975*x + 175750567141951945*x^2 + 2619873688447764034*x^3 +10193280906798742181*x^4 +15352998640256699136 *x^5 + 10914782775709466368*x^6 +4085382181827774828*x^7 + 853384566008402142*x^8 +101542034509085885*x^9 +6753041931691759*x^10 + 231102453194910*x^11 +3138428376721*x^12)*exp(x). (End)

A131191 Numbers n>=0 such that d(n) = (n^1 + 1) (n^2 + 2) ... (n^22 + 22) / 22!, e(n) = (n^1 + 1) (n^2 + 2) ... (n^23 + 23) / 23!, and f(n) = (n^1 + 1) (n^2 + 2) ... (n^24 + 24) / 24! take nonintegral values.

Original entry on oeis.org

7, 18, 29, 40, 51, 62, 73, 84, 95, 106, 128, 139, 150, 161, 172, 183, 194, 205, 216, 227, 249, 260, 271, 282, 293, 304, 315, 326, 337, 348, 370, 381, 392, 403, 414, 425, 436, 447, 458, 469, 491, 502, 513, 524, 535, 546, 557, 568, 579, 590, 612, 623, 634, 645, 656, 667, 678, 689, 700, 711, 733, 744
Offset: 1

Views

Author

Keywords

Comments

If n is in this sequence, then so is n+121. - Max Alekseyev, Feb 02 2015

Crossrefs

Formula

Notice that 22! = 2^19 * 3^9 * 5^4 * 7^3 * 11^2 * 13 * 17 * 19. All these prime powers divide (n^1 + 1)*(n^2 + 2)*(n^3 +3)*...*(n^22 + 22), except for 11^2. 11^2 does not divide (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^22 + 22) for n = 7, 18, 29, 40, 51, 62, 73, 84, 95, 106 modulo 121. That is, d(n) is nonintegral for n the form 11m+7 but not 121m+117, and so are e(n) and f(n). - Max Alekseyev, Nov 10 2007

Extensions

Initial terms were calculated by Peter J. C. Moses; see comment in A129995.
More terms from Max Alekseyev, Feb 02 2015

A319524 a(n) is the smallest number that belongs simultaneously to the two arithmetic progressions prime(n) + m*prime(n+1) and prime(n+1) + m*prime(n+2), m >= 1, n >= 1.

Original entry on oeis.org

8, 33, 40, 128, 115, 302, 226, 226, 835, 401, 734, 1718, 1030, 842, 3121, 3475, 1401, 2339, 5108, 1969, 3233, 2486, 6491, 9692, 10298, 5560, 11552, 6211, 4177, 7987, 6022, 18763, 16678, 21893, 8001, 25585, 13523, 9682, 30961, 32035, 7057, 36089, 19105, 39002, 7162, 47041, 50163, 51752
Offset: 1

Views

Author

Keywords

Comments

Construct a table T in which T(m,n) = prime(n) + m*prime(n+1) as shown below. Then a(n) is defined as the smallest number appearing both in column n and column n+1, so a(1)=8, a(2)=33, a(3)=40, etc.
.
m\n| 1 2 3 4 5 6 7 8 ...
----+--------------------------------------------------
1 | 5 --8 12 18 24 30 36 42 ...
|
2 | 8-- 13 19 29 37 47 55 65 ...
|
3 | 11 18 26 40 50 64 74 88 ...
| /
4 | 14 23 33 / 51 63 81 93 111 ...
| / /
5 | 17 28 / 40- 62 76 98 112 134 ...
| /
6 | 20 33- 47 73 89 115 131 157 ...
| /
7 | 23 38 54 84 102 / 132 150 180 ...
| /
8 | 26 43 61 95 115 149 169 203 ...
|
9 | 29 48 68 106 128 166 188 226 ...
| / /
10 | 32 53 75 117 / 141 183 207 / 249 ...
| / /
11 | 35 58 82 128 154 200 226 272 ...
|
12 | 38 63 89 139 167 217 245 295 ...
|
13 | 41 68 96 150 180 234 264 318 ...
|
14 | 44 73 103 161 193 251 283 341 ...
|
15 | 47 78 110 172 206 268 302 364 ...
| /
16 | 50 83 117 183 219 285 / 321 387 ...
| /
17 | 53 88 124 194 232 302 340 410 ...
|
... |... ... ... ... ... ... ... ... ...
Conjectures:
1. There are infinitely many pairs of consecutive equal terms. (Note that the first pair is (a(7), a(8)).)
2. There exists no N such that the sequence is monotonic for n > N.
From Amiram Eldar, Sep 22 2018: (Start)
Theorem 1: The intersection of the two mentioned arithmetic progressions is always nonempty.
Corollary: The sequence is infinite. (End)
Sequences that derive from this:
1. Positions in {s(n)} at which a(n) occurs: (2,6,5,11,8,17,19,...).
2. Positions in {s(n+1)} at which a(n) occurs: (1,4,3,9,6,15,15,...).
3. Differences between these two sequences: (1,2,2,2,2,4,...).

Crossrefs

Programs

  • GAP
    P:=Filtered([1..10000],IsPrime);;
    T:=List([1..Length(P)-1],n->List([1..Length(P)-1],m->P[n]+m*P[n+1]));;
    a:=List([1..50],k->Minimum(List([1..Length(T)-1],i->Intersection(T[i],T[i+1]))[k])); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    a[n_]:=ChineseRemainder[{Prime[n],Prime[n+1]},{Prime[n+1],Prime[n+2]} ];Array[a,44] (* Amiram Eldar, Sep 22 2018 *)

Extensions

Table from Jon E. Schoenfield, Sep 23 2018
More terms from Amiram Eldar, Sep 22 2018
Previous Showing 11-14 of 14 results.