cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A326181 Numbers n for which sigma(sigma(n)) = 3*sigma(n).

Original entry on oeis.org

54, 56, 87, 95, 276, 308, 429, 446, 455, 501, 581, 611, 158928, 194928, 195072, 199950, 226352, 234608, 236432, 248325, 255678, 263504, 266192, 273050, 275415, 304575, 336903, 341162, 353675, 366575, 369425, 369843, 380463, 386313, 389463, 406565, 411725, 415925, 422303, 447587, 468743, 497333, 500993, 511829, 515267, 519557, 519677
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2019

Keywords

Comments

Any odd perfect numbers must occur in this sequence, as such numbers must be in the intersection of A000396 and A326051, that is, satisfy both sigma(n) = 2n and sigma(2n) = 6n = 3*2n, thus in combination they must satisfy sigma(sigma(n)) = 3*sigma(n). Note that odd perfect numbers should occur also in A019283.
If, as conjectured, A005820 has 6 terms, then this sequence is finite and has 756 terms. - Giovanni Resta, Jun 17 2019

Crossrefs

Subsequence of A066961.

Programs

  • PARI
    isA326181(n) = { my(s=sigma(n)); (sigma(s)==3*s); };

A332457 Numbers k such that sigma(k) == 2 modulo 8 and sigma(sigma(k)) == 6 modulo 8.

Original entry on oeis.org

193, 202, 673, 1153, 1201, 1354, 1601, 1642, 1873, 2017, 2088, 2593, 2682, 2753, 3049, 3112, 3217, 3313, 3328, 3754, 3898, 4041, 4084, 4177, 4273, 4337, 4426, 4561, 5193, 5233, 5386, 5449, 5482, 5849, 6337, 6353, 6826, 6922, 7002, 7057, 7114, 7393, 7402, 7537, 7793, 8081, 8104, 8353, 8564, 8698, 8872, 9049, 9377, 9601
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2020

Keywords

Comments

That the first part of the condition is necessary for odd perfect numbers, see A332228, that the second part of the condition is necessary, see A019283 and A326181.

Crossrefs

Intersection of A332226 and A332456.
Cf. A332458 (a subsequence of non-primepower odd terms).

Programs

  • Magma
    [k:k in [1..9700]| DivisorSigma(1,k) mod 8 eq 2 and DivisorSigma(1, DivisorSigma(1,k)) mod 8 eq 6]; // Marius A. Burtea, Feb 15 2020
  • Mathematica
    Select[Range[10000],With[{c=DivisorSigma[1,#]},Mod[c,8]==2&&Mod[DivisorSigma[1,c],8]==6&]]  (* Harvey P. Dale, Nov 23 2024 *)
  • PARI
    isA332457(n) = { my(s=sigma(n)); ((2==(s%8)) && (6==(sigma(s)%8))); };
    

A205597 Odd terms of A019278: odd n such that sigma(sigma(n))/n is an integer.

Original entry on oeis.org

1, 15, 21, 1023, 29127, 550095, 355744082763
Offset: 1

Views

Author

Jud McCranie, Feb 08 2012

Keywords

Comments

a(8) > 4*10^12, if it exists. - Giovanni Resta, Feb 26 2020
First five terms are squarefree. Sigma(sigma(n))/n ratios for these seven known terms are: 1, 4, 3, 4, 4, 6, 4. - Antti Karttunen, Mar 19 2021

Examples

			15 is odd, sigma(15) = 24, sigma(24) = 60, and 60/15 is an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], Mod[Nest[DivisorSigma[1, #] &, #, 2], #] == 0 &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    isok(n) = (n%2) && (denominator(sigma(sigma(n))/n) == 1); \\ Michel Marcus, Sep 27 2017

A247111 Integers k such that sigma(sigma(k) - k) = 2*k, where sigma is the sum of divisors, A000203.

Original entry on oeis.org

6, 28, 36, 496, 8128, 33550336, 8589869056
Offset: 1

Views

Author

Michel Marcus, Nov 19 2014

Keywords

Comments

That is, integers k such that A072869(k) = 2*k.
All perfect numbers (A000396) belong to this sequence.
Is there another term like 36 that is not perfect?
a(8) > 10^11. - Hiroaki Yamanouchi, Sep 11 2015
a(8) <= 137438691328. - David A. Corneth, Jun 04 2021

Examples

			For k=36, sigma(sigma(36)-36) = sigma(91-36) = sigma(55) = 72, hence 36 is in the sequence.
		

Crossrefs

Cf. A000203 (sigma(n)), A000396 (perfect numbers), A001065 (sigma(n)-n), A072869 (sigma(sigma(n)-n)).
Cf. also A019283, A326181, A342922.

Programs

  • Mathematica
    Select[Range[1,10000],DivisorSigma[1,DivisorSigma[1,#]-#]==2*#&] (* Julien Kluge, Sep 20 2016 *)
  • PARI
    isok(n) = (sigma(sigma(n) - n) == 2*n);

Extensions

a(7) from Michel Marcus, Nov 22 2014
Previous Showing 11-14 of 14 results.