cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A204067 Decimal expansion of the Fresnel Integral, Integral_{x >= 0} cos(x^3) dx.

Original entry on oeis.org

7, 7, 3, 3, 4, 2, 9, 4, 2, 0, 7, 7, 9, 8, 9, 8, 5, 0, 1, 9, 6, 1, 0, 1, 6, 1, 1, 2, 9, 5, 2, 1, 7, 3, 4, 0, 9, 2, 4, 8, 0, 6, 8, 4, 7, 2, 2, 4, 2, 1, 5, 6, 7, 2, 6, 6, 2, 0, 3, 1, 9, 5, 5, 4, 7, 2, 9, 7, 6, 5, 7, 1, 1, 6, 1, 1, 6, 0, 6, 4, 6, 6, 5, 0, 3, 8, 6, 4, 9, 5, 7, 5, 9, 9, 9, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Examples

			0.7733429420779898501961016...
		

Crossrefs

Programs

  • Maple
    evalf(int(cos(x^3),x=0..infinity),120); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    RealDigits[Gamma[1/3]/(2*Sqrt[3]), 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
  • PARI
    Pi/(3*gamma(2/3)) \\ Gheorghe Coserea, Sep 26 2018
    
  • PARI
    intnum(x=[0, -2/3], [oo, I], cos(x)/x^(2/3))/3 \\ Gheorghe Coserea, Sep 26 2018

Formula

Equals Pi/(3*Gamma(2/3)) = A019670 / A073006.
Equals Gamma(1/3)/(2*sqrt(3)) = A073005 / A010469. - Amiram Eldar, May 26 2023

A238238 Decimal expansion of the polar angle, in radians, of a cone which makes a golden-ratio cut of the full solid angle.

Original entry on oeis.org

1, 3, 3, 2, 4, 7, 8, 8, 6, 4, 9, 8, 5, 0, 3, 0, 5, 1, 0, 2, 0, 8, 0, 0, 9, 7, 9, 1, 9, 5, 5, 5, 8, 5, 4, 4, 1, 3, 3, 4, 9, 8, 0, 2, 7, 7, 4, 5, 1, 8, 9, 5, 6, 8, 5, 6, 6, 2, 9, 4, 7, 6, 8, 5, 6, 0, 7, 9, 5, 7, 9, 7, 8, 7, 5, 8, 1, 1, 8, 5, 6, 3, 4, 1, 5, 8, 1
Offset: 1

Views

Author

Stanislav Sykora, Feb 20 2014

Keywords

Comments

The polar angle (or apex angle) of a cone which cuts a fraction f of the full solid angle (i.e., subtends a solid angle of 4*Pi*f steradians) is given by arccos(1-2*f). For a golden cut of the sphere surface by a cone with apex in its center, set f = 1-1/phi, phi being the golden ratio A001622. This value is in radians, its equivalent in degrees is A238239.
The apex angle of the isosceles triangle of smallest perimeter which circumscribes a semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022

Examples

			1.3324788649850305102080097919555854413349802774518956856629476856...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[2/GoldenRatio  -1],10,120][[1]] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    acos(4/(1+sqrt(5))-1)

Formula

arccos(1-2*(1-1/phi)) = arccos(2/phi-1), with phi = A001622.

A352453 Decimal expansion of the area of intersection of 4 unit-radius circles that have the vertices of a unit-side square as centers.

Original entry on oeis.org

3, 1, 5, 1, 4, 6, 7, 4, 3, 6, 2, 7, 7, 2, 0, 4, 5, 2, 6, 2, 6, 7, 6, 8, 1, 1, 9, 5, 8, 7, 2, 9, 5, 2, 6, 1, 1, 2, 2, 9, 1, 7, 8, 7, 9, 3, 1, 4, 6, 5, 4, 6, 4, 5, 6, 0, 2, 5, 0, 7, 8, 8, 4, 6, 5, 0, 6, 7, 2, 4, 5, 1, 8, 5, 3, 2, 6, 9, 6, 2, 9, 1, 2, 8, 1, 9, 8, 7, 5, 5, 0, 2, 3, 4, 5, 7, 1, 1, 3, 6, 5, 1, 7, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Mar 16 2022

Keywords

Comments

The solution to a problem in Jones (1932): "At each corner of a garden, surrounded by a wall n yards square, a goat is tied with a rope n yards long. Find the area of the part of the garden common to the four goats." (When the square is taken to be of unit size, the common area is this constant.)
The perimeter of the shape formed by the intersection is 2*Pi/3 (A019693).
The solution to the three-dimensional version of this problem is A352454.

Examples

			0.31514674362772045262676811958729526112291787931465...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Pi/3 - Sqrt[3], 10, 100][[1]]

Formula

Equals 1 + Pi/3 - sqrt(3) = 1 + A019670 - A002194.

A281452 Expansion of f(x, x) * f(x^5, x^13) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 4, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 5, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 2
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^5 + 2*x^6 + 4*x^9 + x^13 + 4*x^14 + 2*x^16 + ...
G.f. = q^4 + 2*q^13 + 2*q^40 + q^49 + 2*q^58 + 4*q^85 + q^121 + 4*q^130 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 4, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^18] QPochhammer[ -x^13, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 4])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 4, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 4, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 2 || k%9 == 7), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 4); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 4*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 - x^(18*k-13)) * (1 - x^(18*k-5)) * (1 - x^(18*k)).
a(n) = A122865(3*n + 1) = A122856(6*n + 2) = A258278(6*n + 2). a(n) = - A256269(9^n + 4). 4 * a(n) = A004018(9*n + 4).
2 * a(n) = b(9*n + 4) = with b = A105673, A105673, A122857, A258034, A259761. -2 * a(n) = b(9*n + 4) with b = A138949, A256280, A258292.
a(4*n) = A281453(n). a(8*n + 6) = 2 * A281490(n). a(16*n + 12) = A281451(n).
a(32*n + 4) = 2 * A281492(n). a(64*n + 28) = A281452(n). a(128*n + 60) = 2 * A281491(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Jan 20 2025

A346573 Decimal expansion of 2 - Pi/3.

Original entry on oeis.org

9, 5, 2, 8, 0, 2, 4, 4, 8, 8, 0, 3, 4, 0, 2, 2, 5, 3, 8, 4, 5, 7, 8, 5, 5, 3, 8, 9, 0, 6, 8, 3, 2, 3, 7, 1, 9, 3, 4, 2, 7, 6, 8, 6, 6, 8, 7, 4, 9, 6, 4, 7, 2, 6, 3, 4, 1, 6, 8, 5, 1, 3, 5, 8, 9, 7, 3, 9, 4, 5, 3, 1, 2, 3, 7, 9, 3, 0, 3, 3, 3, 7, 9, 0, 6, 5, 5
Offset: 0

Views

Author

Sean A. Irvine, Jul 23 2021

Keywords

Examples

			0.9528024488034022538457855389...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (316).

Crossrefs

Programs

  • Mathematica
    RealDigits[2-Pi/3, 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

Equals 2 - A019670.
Equals 1 + Sum_{k>=1} ( ((-1)^k/(6*k-1) - (-1)^k/(6*k+1)) ).

A152627 Decimal expansion of 3/4.

Original entry on oeis.org

7, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

This is also the expected distance from a randomly selected point in the unit sphere to its center. - Derek Orr, Jul 27 2014

Examples

			0.75000000000000000000000000000000000000000000000000000000000...
		

Crossrefs

Cf. A019670 (Pi/3).

Programs

  • Mathematica
    RealDigits[3/4, 10, 128][[1]] (* Alonso del Arte, Feb 16 2015 *)

Formula

Equals (sin(Pi/3))^2. - Michel Marcus, Sep 12 2020
Equals Sum_{k>=1} (zeta(2*k) - 1). - Amiram Eldar, May 24 2021

A274399 a(n) = floor(n*Pi/3).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70
Offset: 0

Views

Author

Keywords

Examples

			For n = 1000 we have that floor(1000*Pi/3) = floor(1000*1.04719755...) = floor(1047.19755...) so a(1000) = 1047.
		

Crossrefs

Complement of A277051.

Programs

  • Maple
    A274399:=n->floor(n*Pi/3): seq(A274399(n), n=0..100); # Wesley Ivan Hurt, Sep 26 2016
  • Mathematica
    f[n_] := Floor[n*Pi/Floor[Pi]]; Array[f, 100, 0]
  • Maxima
    makelist(floor(n*(%pi/3)), n, 0, 100);
    
  • PARI
    a(n) = n*Pi\3; \\ Michel Marcus, Sep 26 2016

Formula

a(n) = floor(n*Pi/floor(Pi)) = floor(n*Pi/3).

A277051 a(n) = floor(n/(1-3/Pi)).

Original entry on oeis.org

22, 44, 66, 88, 110, 133, 155, 177, 199, 221, 244, 266, 288, 310, 332, 355, 377, 399, 421, 443, 465, 488, 510, 532, 554, 576, 599, 621, 643, 665, 687, 710, 732, 754, 776, 798, 820, 843, 865, 887, 909, 931, 954, 976, 998, 1020, 1042, 1065, 1087, 1109, 1131, 1153, 1175
Offset: 1

Views

Author

Keywords

Examples

			For n = 10 we have that floor(10/(1-3/Pi)) = floor(10/0.04719755...) = floor(211.8754045...) so a(10) = 221.
		

Crossrefs

Complement of A274399.

Programs

  • Maple
    A277051:=n->floor(n/(1-3/Pi)): seq(A277051(n), n=1..100); # Wesley Ivan Hurt, Sep 26 2016
  • Mathematica
    f[n_] := Floor[n/(1-3/Pi)]; Array[f, 100, 1]
  • Maxima
    makelist(floor(n / (1-3 / %pi )), n, 1, 100);
    
  • PARI
    a(n)=n\(1-3/Pi) \\ Charles R Greathouse IV, Sep 26 2016

Formula

a(n) = floor(n/(1-3/Pi)).

A325742 First term of n-th difference sequence of (floor(Pi*k/3)), k >= 0.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -22, 253, -2024, 12650, -65780, 296010, -1184040, 4292145, -14307150, 44352165, -129024480, 354817320, -927983760, 2319959400, -5567902560, 12875774670, -28781143380, 62359143990
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[First[Differences[Table[Floor[(Pi/3)*n], {n, 0, 50}], n]], {n, 1, 50}]

A336077 Decimal expansion of (10*Pi + 3*sqrt(3)) / (2*Pi - 3*sqrt(3)).

Original entry on oeis.org

3, 3, 6, 8, 0, 7, 4, 6, 4, 4, 4, 3, 5, 0, 5, 2, 8, 4, 2, 9, 9, 1, 2, 5, 1, 7, 9, 5, 2, 8, 5, 9, 2, 0, 0, 8, 0, 7, 3, 6, 0, 4, 5, 8, 5, 8, 5, 3, 2, 3, 3, 8, 8, 4, 5, 0, 7, 6, 4, 3, 5, 5, 3, 4, 8, 7, 4, 0, 7, 9, 1, 1, 1, 2, 2, 3, 5, 6, 8, 0, 4, 2, 1, 1, 1, 4
Offset: 2

Views

Author

Clark Kimberling, Jul 11 2020

Keywords

Comments

Decimal expansion of the ratio of segment areas for arclength Pi/3 on the unit circle. In general, suppose that s in (0,Pi) is the length of an arc of the unit circle. The associated chord separates the interior into two segments. Let A1 be the area of the larger and A2 the area of the smaller. The term "ratio of segment areas" means A1/A2. See A336073 for a guide to related sequences.

Examples

			33.68074644435052842991251795285920080736045858...
		

Crossrefs

Cf. A336073.

Programs

  • Maple
    s := Pi/3 ;
    sss := s-sin(s) ;
    evalf( 2*Pi/sss -1 ) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    s = Pi/3; r = N[(2 Pi - s + Sin[s])/(s - Sin[s]), 200]
    RealDigits[r][[1]]

Formula

Equals (2*Pi - s + sin(s))/(s - sin(s)), where s = Pi/3 = A019670.
Previous Showing 31-40 of 46 results. Next