cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 64 results. Next

A116160 Numbers k such that k concatenated with itself gives the product of two numbers which differ by 7.

Original entry on oeis.org

4, 94, 210, 294, 994, 5880, 9994, 52888, 99994, 127044, 414180, 999994, 8264470, 9999994, 12456750, 41868508, 99999994, 112670544, 441341880, 468144040, 669421494, 702338994, 715976338, 750005718, 960645294, 999999994
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A178664 a(n) = 2^n concatenated with itself.

Original entry on oeis.org

11, 22, 44, 88, 1616, 3232, 6464, 128128, 256256, 512512, 10241024, 20482048, 40964096, 81928192, 1638416384, 3276832768, 6553665536, 131072131072, 262144262144, 524288524288, 10485761048576, 20971522097152, 41943044194304, 83886088388608, 1677721616777216
Offset: 0

Views

Author

Vincenzo Librandi, Jul 10 2010

Keywords

Examples

			a(1) = 22 because 2^1 concatenated with 2^1 is 22.
		

Crossrefs

Cf. A000079.

Programs

  • Magma
    [Seqint(Intseq(2^n) cat Intseq(2^n)): n in [0..40]]; // Vincenzo Librandi, Mar 14 2012
  • Maple
    a:= n-> parse(cat(2^n$2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[2^n],IntegerDigits[2^n]]],{n,0,30}] (* Vincenzo Librandi, Mar 14 2012 *)
    #*10^IntegerLength[#]+#&/@(2^Range[0,25]) (* Harvey P. Dale, Aug 29 2024 *)

Formula

a(n) = A020338(2^n). - Bruno Berselli, Mar 14 2012

A032610 Concatenation of n and n + 5 or {n,n+5}.

Original entry on oeis.org

16, 27, 38, 49, 510, 611, 712, 813, 914, 1015, 1116, 1217, 1318, 1419, 1520, 1621, 1722, 1823, 1924, 2025, 2126, 2227, 2328, 2429, 2530, 2631, 2732, 2833, 2934, 3035, 3136, 3237, 3338, 3439, 3540, 3641, 3742, 3843, 3944, 4045, 4146, 4247
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032612 Concatenation of n and n+7.

Original entry on oeis.org

18, 29, 310, 411, 512, 613, 714, 815, 916, 1017, 1118, 1219, 1320, 1421, 1522, 1623, 1724, 1825, 1926, 2027, 2128, 2229, 2330, 2431, 2532, 2633, 2734, 2835, 2936, 3037, 3138, 3239, 3340, 3441, 3542, 3643, 3744, 3845, 3946, 4047, 4148, 4249
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*10^IntegerLength[n+7]+n+7,{n,50}] (* Harvey P. Dale, Apr 26 2025 *)
  • Python
    def A032612(n): return n*(10**len(str(n+7))+1)+7 # Chai Wah Wu, Jun 29 2025

A032650 Lucky numbers that are concatenations of a number k with itself.

Original entry on oeis.org

33, 99, 2121, 2323, 5151, 5959, 6363, 7171, 7575, 8787, 8989, 9999, 105105, 111111, 117117, 123123, 129129, 135135, 143143, 147147, 153153, 171171, 173173, 177177, 191191, 201201, 237237, 243243, 255255, 263263, 285285, 305305, 309309, 317317
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Intersection of A000959 and A020338.
Cf. A032640.

Formula

a(n) = A032640(n) || A032640(n), where || denotes concatenation. - Kevin P. Thompson, Nov 09 2021

Extensions

More terms from Sascha Kurz, Mar 24 2002
Edited by Charles R Greathouse IV, Apr 26 2010

A077431 n repeated in decimal representation, but separated by enough zeros that the square has the pattern (n^2)(2n^2)(n^2).

Original entry on oeis.org

11, 22, 303, 404, 505, 606, 707, 8008, 9009, 10010, 11011, 12012, 13013, 14014, 15015, 16016, 17017, 18018, 19019, 20020, 21021, 22022, 230023, 240024, 250025, 260026, 270027, 280028, 290029, 300030, 310031, 320032, 330033, 340034, 350035
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 05 2002

Keywords

Comments

A077433(n) = number of separating zeros.

Examples

			a(17) = 17017, as 17017^2 = 289578289 = A077432(17) = 289'578'289 and 289=17^2 and 578=2*289.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := For[idn = IntegerDigits[n]; k = 0, True, k++, an = FromDigits[ Join[idn, Table[0, k], idn]]; If[MatchQ[IntegerDigits[an^2], {b__ /; IntegerQ[Sqrt[FromDigits[{b}]]], c___, 0..., b__} /; FromDigits[{c}] == 2*FromDigits[{b}]], Return[an]]];
    Array[a, 35] (* Jean-François Alcover, Nov 13 2017 *)

Formula

a(n) = n*(1+10^(1+floor(log_10(2*n^2)))).

A084855 Triangular array, read by rows: T(n,k) = concatenated decimal representations of k and n, 1<=k<=n.

Original entry on oeis.org

11, 12, 22, 13, 23, 33, 14, 24, 34, 44, 15, 25, 35, 45, 55, 16, 26, 36, 46, 56, 66, 17, 27, 37, 47, 57, 67, 77, 18, 28, 38, 48, 58, 68, 78, 88, 19, 29, 39, 49, 59, 69, 79, 89, 99, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 111, 211, 311, 411, 511, 611, 711, 811, 911, 1011, 1111
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2003

Keywords

Crossrefs

Programs

  • Python
    def T(n, k): return int(str(k) + str(n))
    def auptorow(maxrow):
        return [T(n, k) for n in range(1, maxrow+1) for k in range(1, n+1)]
    print(auptorow(11)) # Michael S. Branicky, Nov 21 2021

Formula

T(n, k) = k*10^A055642(n) + n.
T(n, n) = A020338(n).

A175605 a(n) = concatenation of n^3 with itself.

Original entry on oeis.org

11, 88, 2727, 6464, 125125, 216216, 343343, 512512, 729729, 10001000, 13311331, 17281728, 21972197, 27442744, 33753375, 40964096, 49134913, 58325832, 68596859, 80008000, 92619261, 1064810648, 1216712167, 1382413824, 1562515625
Offset: 1

Views

Author

Vincenzo Librandi, Nov 15 2010

Keywords

Examples

			Concatenation 1 and 1=11; 8 and 8=88; 27 and 27=2727; etc.
		

Crossrefs

Cf. A020338.

Programs

  • Magma
    [Seqint(Intseq(n^3) cat Intseq(n^3)): n in [1..40]]; // Vincenzo Librandi, Jan 01 2015
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n^3], IntegerDigits[n^3]]], {n, 40}] (* Vincenzo Librandi, Jan 01 2015 *)

A206527 3^n concatenated with itself.

Original entry on oeis.org

11, 33, 99, 2727, 8181, 243243, 729729, 21872187, 65616561, 1968319683, 5904959049, 177147177147, 531441531441, 15943231594323, 47829694782969, 1434890714348907, 4304672143046721, 129140163129140163, 387420489387420489
Offset: 0

Views

Author

Vincenzo Librandi, Mar 14 2012

Keywords

Examples

			a(1)=33 because 3^1 concatenated with 3^1 is 33.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(3^n) cat Intseq(3^n)): n in [0..18]]; // Bruno Berselli, Mar 14 2012
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[3^n], IntegerDigits[3^n]]], {n, 0, 18}] (* Bruno Berselli, Mar 14 2012 *)
    Table[3^n 10^IntegerLength[3^n]+3^n,{n,0,20}] (* Harvey P. Dale, May 27 2019 *)

Formula

a(n) = A020338(3^n). - Bruno Berselli, Mar 14 2012

A248422 Even integers concatenated with themselves.

Original entry on oeis.org

22, 44, 66, 88, 1010, 1212, 1414, 1616, 1818, 2020, 2222, 2424, 2626, 2828, 3030, 3232, 3434, 3636, 3838, 4040, 4242, 4444, 4646, 4848, 5050, 5252, 5454, 5656, 5858, 6060, 6262, 6464, 6666, 6868, 7070, 7272, 7474, 7676, 7878, 8080, 8282, 8484, 8686, 8888, 9090, 9292, 9494, 9696, 9898, 100100
Offset: 1

Views

Author

Lev Krasnovsky, Oct 06 2014

Keywords

Comments

Bisection of A020338.

Crossrefs

Cf. A020338.

Programs

  • Magma
    [Seqint(Intseq(n) cat Intseq(n)): n in [2..100 by 2]]; // Vincenzo Librandi, Oct 21 2014
  • Mathematica
    FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[With[{c=2*Range[ 50]}, Riffle[c,c]],2] (* or *) Table[n*10^IntegerLength[n]+n,{n,2,100,2}] (* Harvey P. Dale, Jun 11 2019 *)
  • PARI
    a(n) = eval(concat(Str(2*n), Str(2*n))); \\ Michel Marcus, Oct 06 2014
    

Formula

a(n) = 2*n*10^ceiling(log_10(2*n)) + 2*n. - Tom Edgar, Oct 21 2014
Previous Showing 31-40 of 64 results. Next