cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A176797 Antiharmonic means of divisors of antiharmonic numbers.

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 21, 43, 35, 43, 61, 63, 85, 111, 77, 157, 91, 129, 119, 147, 185, 171, 273, 183, 255, 343, 231, 301, 245, 255, 333, 313, 507, 301, 455, 481, 521, 425, 471, 547, 473, 455, 813, 441, 931, 629, 559
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2010

Keywords

Comments

Values of sigma_2(n) / sigma(n) corresponding to terms of A020487(n), where sigma_2(n) is the sum of squares of divisors of n (A001157) and sigma(n) is the sum of the divisors of n (A000203).

Examples

			For n = 4; a(4) = 11 because A020487(4) = 16; A001157(16) = 341, A000203(n) = 31, antiharmonic means of divisors of 16 = 341 / 31 = 11.
		

Programs

  • Mathematica
    Select[DivisorSigma[2, #]/DivisorSigma[1, #] & /@ Range[1000], IntegerQ] (* Amiram Eldar, Sep 18 2019 *)

Formula

a(n) = (A001157(A020487(n))) / (A000203(A020487(n))).

A227771 Antiharmonic numbers that are not squares.

Original entry on oeis.org

20, 50, 117, 180, 200, 242, 325, 450, 468, 500, 578, 605, 650, 800, 968, 980, 1025, 1058, 1280, 1300, 1445, 1476, 1620, 1682, 1700, 1800, 1872, 2178, 2312, 2340, 2420, 2450, 2600, 2645, 2925, 3200, 3362, 3380, 3757, 3872, 4050, 4100, 4205, 4232, 4352, 4418, 4500, 4693, 5200
Offset: 1

Views

Author

Jonathan Sondow, Aug 02 2013

Keywords

Comments

Given prime factorization m = product (p_i^e_i), the antiharmonic (or contraharmonic) mean of the divisors of m is sigma_2(m)/sigma_1(m) = product (p_i^(e_i+1)+1)/(p_i+1). If this is an integer, then m is called antiharmonic.
All squares are trivially antiharmonic, since (p^(2*e+1)+1)/(p+1) = p^(2*e) - p^(2*e-1) + p^(2*e-2) - ... + 1 is an integer. Sequence gives the nontrivial antiharmonic numbers.
The antiharmonic means of their divisors are A227986.
Sequence is infinite, since if n is in the sequence and gcd(n, k) = 1 then nk^2 is also in the sequence. - Charles R Greathouse IV, Aug 02 2013
Removing such terms nk^2 leaves the primitive antiharmonic numbers A228023. - Jonathan Sondow, Aug 04 2013

Examples

			sigma_2(20)/sigma_1(20) = (1^2 + 2^2 + 4^2 + 5^2 + 10^2 + 20^2)/(1 + 2 + 4 + 5 + 10 + 20) = 546/42 = 13 is an integer, 20 is not a square, and no smaller number has these properties, so a(1) = 20.
		

References

  • R. Guy, Unsolved Problems in Number Theory, B2 (see harmonic number).

Crossrefs

Programs

  • PARI
    is(n)=if(issquare(n),return(0)); my(f=factor(n)); denominator(prod(i=1,#f~,(f[i,1]^(f[i,2]+1)+1)/(f[i,1]+1)))==1 \\ Charles R Greathouse IV, Aug 02 2013

Formula

A001157(a(n))/A000203(a(n)) = A227986(n).

A046871 Numbers k such that sigma_2(k) divides sigma_4(k).

Original entry on oeis.org

1, 4, 9, 16, 20, 25, 36, 48, 49, 64, 81, 100, 121, 144, 162, 169, 180, 196, 225, 245, 256, 289, 324, 361, 400, 432, 441, 484, 500, 529, 576, 605, 625, 648, 676, 729, 784, 841, 900, 931, 961, 980, 1024, 1089, 1156, 1200, 1225, 1280, 1296, 1369, 1444, 1521
Offset: 1

Views

Author

Keywords

Comments

sigma_2(k) is the sum of the squares of the divisors of k (A001157).
sigma_4(k) is the sum of the 4th powers of the divisors of k (A001159).

Examples

			k = a(8) = 48 of which divisor power sums for powers 0, 1, 2, 3, 4 are 10, 124, 3410, 131068, 5732210, respectively. Here sigma_2(k) = 3410 and sigma_4(k) = 3410*1681.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1600] | IsZero(DivisorSigma(4,n) mod DivisorSigma(2,n))]; // Bruno Berselli, Apr 10 2013
    
  • Mathematica
    Select[Range@ 1600, Divisible[DivisorSigma[4, #], DivisorSigma[2, #]] &] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    isok(n) = !(sigma(n, 4) % sigma(n, 2)); \\ Michel Marcus, May 21 2017

A144695 Numbers n such that sigma_1(n)/sigma_0(n) = c^2, c an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 19 2008

Keywords

Comments

A000203(n)/A000005(n) = c^2. Generalized sigma-sequences are sequences of numbers n for which sigma_r(n)/sigma_s(n) = c^t . Sigma_i(n) denotes sum of i-th powers of divisors of n; c,r,s,t positive integers. This sequence has r=1,s=0,t=2, sequence A003601 has r=1,s=0,t=1, sequence {1,21,53,85,102,110,127,217,431,....} has r=1,s=0,t=3, sequence A020487 has r=2,s=1,t=1, sequence A020486 has r=2,s=0,t=1, sequence A140480 has r=2,s=0,t=2.

Crossrefs

Programs

  • Maple
    A000005 := proc(n) numtheory[tau](n) ; end: A000203 := proc(n) numtheory[sigma](n) ; end: isA144695 := proc(n) local s ; s := A000005(n) ; if s <> 0 then issqr(A000203(n)/s) ; else false ; fi; end: for n from 1 to 5000 do if isA144695(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 20 2008
  • Mathematica
    Select[Range[1125], IntegerQ @ Sqrt[DivisorSigma[1, #]/DivisorSigma[0, #]] &] (* Amiram Eldar, Nov 20 2019 *)
  • PARI
    isok(m) = my(f=factor(m), q=sigma(f)/numdiv(f)); issquare(q) && !frac(q); \\ Michel Marcus, Mar 15 2022

Extensions

More terms from R. J. Mathar, Sep 20 2008

A228023 Primitive antiharmonic numbers.

Original entry on oeis.org

1, 20, 50, 117, 200, 242, 325, 500, 578, 605, 650, 800, 968, 1025, 1058, 1280, 1445, 1476, 1682, 1700, 2312, 2340, 2600, 2645, 3200, 3362, 3757, 3872, 4205, 4232, 4352, 4418, 4693, 5618, 6728, 6962, 7514, 8228, 8405, 8833, 9248, 9425, 9472, 10082, 10400, 11045, 11849, 12493
Offset: 1

Views

Author

Keywords

Comments

Antiharmonic numbers (A020487) which are not the product of an antiharmonic number and a relatively prime square > 1. Apart from the first term, a subsequence of A227771 (antiharmonic numbers that are not squares).
Is this sequence infinite? It seems that 4n^2 <= a(n) <= 8n^2 for n > 1, and that a(n) ~ 6n^2 as n -> infinity--see A228036 for motivation.
The antiharmonic mean of the divisors of a(n) is A228024(n).

Examples

			200 = 2^3 * 5^2 is antiharmonic (since sigma_2(200)/sigma(200) = 119 is an integer) but 2^3 is not antiharmonic, so 200 is in this sequence.
180 = 2^2 * 3^2 * 5 is antiharmonic but 180/3^2 = 20 is also antiharmonic, so 180 is not in the sequence.
		

Crossrefs

Programs

  • PARI
    isf(f)=denominator(prod(i=1,#f~,(f[i,1]^(f[i,2]+1)+1)/(f[i,1]+1)))==1
    nosmaller(f,startAt)=for(i=startAt,#f~,if(f[i,2]%2==0&&f[i,2],return(nosmaller(f,i+1)&&!(f[i,2]=0)&&!isf(f)&&nosmaller(f,i+1))));1
    is(n)=my(f);isf(f=factor(n))&&nosmaller(f,1)

A158274 Numerators of antiharmonic means of divisors of n.

Original entry on oeis.org

1, 5, 5, 3, 13, 25, 25, 17, 7, 65, 61, 15, 85, 125, 65, 11, 145, 35, 181, 13, 125, 305, 265, 85, 21, 425, 41, 75, 421, 325, 481, 65, 305, 725, 325, 21, 685, 181, 425, 221, 841, 625, 925, 61, 91, 1325, 1105, 55, 43, 35
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

Numbers k such that sigma_2(k)/sigma_1(k) = A001157(k)/A000203(k) are integers are in A020487.

Examples

			Antiharmonic means of divisors of n>=1: 1, 5/3, 5/2, 3, 13/2, 25/6, ...
		

Crossrefs

Cf. A000203, A001157, A020487, A065473, A152649, A158275 (denominators)

Programs

  • Mathematica
    Table[Numerator[DivisorSigma[2, n]/DivisorSigma[1, n]], {n, 50}] (* Ivan Neretin, May 22 2015 *)
  • PARI
    a(n) = numerator(sigma(n,2)/sigma(n)); \\ Amiram Eldar, Nov 21 2022

Formula

Antiharmonic mean of divisors of number n = Product (p_i^e_i) is sigma_2(n)/sigma_1(n) = A001157(n)/A000203(n) = Product ((p_i^(e_i+1)+1)/(p_i+1)).
Sum_{k=1..n} a(k)/A158275(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (3*p-2)/(p^3)) = A152649 * A065473 = 0.387941... . - Amiram Eldar, Nov 21 2022

A158275 Denominators of antiharmonic means of divisors of n.

Original entry on oeis.org

1, 3, 2, 1, 3, 6, 4, 3, 1, 9, 6, 2, 7, 12, 6, 1, 9, 3, 10, 1, 8, 18, 12, 6, 1, 21, 2, 4, 15, 18, 16, 3, 12, 27, 12, 1, 19, 6, 14, 9, 21, 24, 22, 2, 3, 36, 24, 2, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

Numbers k such that sigma_2(k)/sigma_1(k) = A001157(k)/A000203(k) are integers are in A020487.

Examples

			Antiharmonic means of divisors of n>=1: 1, 5/3, 5/2, 3, 13/2, 25/6, ...
		

Crossrefs

Cf. A001157, A000203, A020487, A158274 (numerators).

Programs

  • Mathematica
    Table[Denominator[DivisorSigma[2, n]/DivisorSigma[1, n]], {n, 50}] (* Ivan Neretin, May 22 2015 *)
  • PARI
    a(n) = denominator(sigma(n,2)/sigma(n)); \\ Amiram Eldar, Nov 21 2022

Formula

Antiharmonic mean of divisors of number n = Product (p_i^e_i) is sigma_2(n)/sigma_1(n) = A001157(n)/A000203(n) = Product ((p_i^(e_i+1)+1)/(p_i+1)).
a(A020487(n)) = 1. - Amiram Eldar, Nov 21 2022

A277553 Numbers k such that the sum of the divisors of k is divisible by the number of divisors of k, and the sum of the squares of the divisors of k is divisible by the sum of the divisors of k.

Original entry on oeis.org

1, 20, 49, 169, 361, 500, 605, 961, 980, 1025, 1369, 1445, 1700, 1849, 2645, 3380, 3721, 4205, 4352, 4489, 4693, 5329, 6241, 7220, 8228, 8281, 8405, 9409, 9425, 10609, 11045, 11849, 11881, 12493, 12500, 14045, 14580, 14641, 15125, 16129, 17405, 17689, 18785
Offset: 1

Views

Author

Harvey P. Dale, Oct 19 2016

Keywords

Comments

Numbers k such that A000005(k) divides A000203(k), and A000203(k) divides A001157(k).

Examples

			1369 has 3 divisors which sum to 1407; 1407 is divisible by 3; the sum of the squares of the divisors of 1369 is 1875531 which is divisible by 1407; so 1369 is a term of the sequence.
		

Crossrefs

Intersection of A003601 and A020487. See also A020486.

Programs

  • Mathematica
    Select[Range[50000],Divisible[DivisorSigma[1,#],DivisorSigma[0,#]] && Divisible[ DivisorSigma[2,#], DivisorSigma[1,#]]&]
  • PARI
    isok(k) = {my(f = factor(k), d = numdiv(f), s = sigma(f), s2 = sigma(f, 2)); !(s % d) && !(s2 % s);} \\ Amiram Eldar, Jan 25 2025

A210494 Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Bruno Berselli, Oct 03 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

Equivalently, numbers m such that ( m*sigma_0(m)+sigma_2(m) ) / (2*sigma_1(m)) = (A038040(m) + A001157(m))/A074400(m) is an integer.
All odd primes belong to the sequence. In fact, if p is an odd prime, (p*sigma_0(p)+sigma_2(p))/(2*sigma_1(p)) = (p+1)/2, therefore p is a biharmonic number.

Crossrefs

Cf. A001599 (harmonic numbers), A020487 (antiharmonic numbers), A038040 (n*sigma_0(n)), A001157 (sigma_2(n)), A074400 (2*sigma_1(n)), A230214 (nonprime terms of A210494).
Cf. A189835.

Programs

  • Haskell
    a210494 n = a210494_list !! (n-1)
    a210494_list = filter
       (\x -> (a001157 x + a038040 x) `mod` a074400 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    IsInteger := func; [n: n in [1..300] | IsInteger((n*NumberOfDivisors(n)+DivisorSigma(2,n))/(2*SumOfDivisors(n)))];
    
  • Maple
    with(numtheory); P:=proc(q) local a,k,n;
    for n from 1 to q do a:=divisors(n);
    if type((n*tau(n)+add(a[k]^2,k=1..nops(a)))/(2*sigma(n)),integer) then print(n); fi; od; end; P(1000); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    B[n_] := (n DivisorSigma[0, n] + DivisorSigma[2, n])/(2 DivisorSigma[1, n]); Select[Range[300], IntegerQ[B[#]] &]
  • PARI
    isok(n) = denominator((n*sigma(n,0) + sigma(n,2))/(2*sigma(n)))==1; \\ Michel Marcus, Jan 14 2016

A228036 (10^n)-th primitive antiharmonic number.

Original entry on oeis.org

1, 605, 51005, 5837732, 599407380, 60462121402
Offset: 0

Author

Keywords

Comments

We conjecture that lim_{n->oo} a(n)/100^n = lim_{n->oo} A228023(n)/n^2 = 6. This is supported by the values a(n)/(10^n)^2 = 6.05, 5.10, 5.84, 5.99, 6.05 for n = 1..5, as well as by the values of A228023(n)/n^2.

Crossrefs

Formula

a(n) = A228023(10^n).

Extensions

a(5) from Charles R Greathouse IV, Sep 03 2013
Previous Showing 11-20 of 31 results. Next