cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 1048 results. Next

A242033 a(n) = lpf(A245024(n)-1), where lpf = least prime factor (A020639).

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 3, 5, 3, 7, 3, 3, 3, 3, 5, 3, 3, 3, 7, 3, 3, 5, 3, 3, 3, 3, 13, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 11, 3, 7, 3, 5, 3, 3, 3, 3, 3, 5, 3, 7, 3, 3, 3, 11, 3, 5, 3, 3, 3, 7, 3, 3, 5, 3, 19, 3, 3, 3, 3, 5
Offset: 1

Views

Author

Vladimir Shevelev, Aug 12 2014

Keywords

Comments

Conjecture. The sequence contains all odd primes.
The conjecture is true. Consider n-1 = p*q where p is an odd prime and q is a prime > p such that q == p^(-1) mod r for every odd prime r < p. Such primes q exist by Dirichlet's theorem on primes in arithmetic progressions. - Robert Israel, Aug 13 2014

Crossrefs

Programs

  • Maple
    lpf:= n -> min(numtheory:-factorset(n)):
    L:= [seq(lpf(2*i+1),i=1..1000)]:
    L[select(i->L[i] < L[i-1], [$2..nops(L)])]; # Robert Israel, Aug 13 2014
  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; (* least prime factor *)
    A242033=Map[lpf[#-1]&,Select[Range[6,300,2],lpf[#-1]A245024*) ] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 12 2014

A242034 a(n) = lpf(A243937(n)-3), where lpf = least prime factor (A020639).

Original entry on oeis.org

3, 5, 3, 11, 3, 17, 3, 3, 29, 3, 5, 3, 41, 3, 3, 3, 59, 3, 5, 3, 71, 3, 7, 3, 3, 3, 5, 3, 101, 3, 107, 3, 3, 7, 3, 5, 3, 3, 137, 3, 3, 149, 3, 5, 3, 7, 3, 3, 3, 179, 3, 5, 3, 191, 3, 197, 3, 3, 11, 3, 5, 3, 13, 3, 227, 3, 3, 239, 3, 5, 3, 3, 3, 3, 269, 3, 5, 3
Offset: 1

Views

Author

Vladimir Shevelev, Aug 12 2014

Keywords

Comments

The records of the sequence form sequence of lesser numbers of twin primes.
The sequence contains all odd primes. Cf. comment by Robert Israel in A242033. - Vladimir Shevelev, Aug 16 2014

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; (* least prime factor *)
    A242034=Map[lpf[#-3]&,Select[Range[6,300,2],lpf[#-1]>lpf[#-3]&](*A243937*)] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 12 2014

A242489 Smallest even k such that lpf(k-1) = prime(n), while lpf(k-3) > prime(n), where lpf=least prime factor (A020639).

Original entry on oeis.org

10, 26, 50, 254, 170, 392, 362, 944, 842, 1892, 1370, 2420, 1850, 2210, 3764, 6314, 3722, 4892, 5042, 7082, 8612, 9380, 7922, 12320, 11414, 10610, 11450, 13844, 18872, 16130, 17162, 20414, 19322, 26672, 24614, 25592, 29504, 37910, 29930, 44930, 36020, 36482
Offset: 2

Views

Author

Vladimir Shevelev, May 16 2014

Keywords

Comments

This sequence is connected with a sufficient condition for the infinitude of twin primes.
Almost all numbers of the form a(n)-3 are primes. For composite numbers of such a form, see A242716.
Primes p for which a(p) = p^2+1 form sequence A062326 for p >= 3. - Vladimir Shevelev, May 21 2014

Examples

			Let n=2, prime(2)=3. Then lpf(10-1)=3, but lpf(10-3)=7>3.
Since k=10 is the smallest such k, then a(2)=10.
		

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[Select[Divisors[n],PrimeQ[#]&]];
    Table[test=Prime[n];NestWhile[#+2&,test^2+1,!((lpf[#-1]==test)&&(lpf[#-3]>test))&],{n,2,60}] (* Peter J. C. Moses, May 21 2014 *)
  • PARI
    a(n) = {k = 6; p = prime(n); while ((factor(k-1)[1, 1] != p) || (factor(k-3)[1, 1] <= p), k+= 2); k;} \\ Michel Marcus, May 16 2014

Formula

a(n) >= prime(n)^2+1. - Vladimir Shevelev, May 21 2014

Extensions

More terms from Michel Marcus, May 16 2014

A242490 Smallest even number k such that lpf(k-3) = prime(n) while lpf(k-1) > lpf(k-3), where lpf=least prime factor (A020639).

Original entry on oeis.org

6, 8, 80, 14, 224, 20, 440, 854, 32, 1460, 1742, 44, 2282, 3434, 4190, 62, 5432, 4760, 74, 12194, 8930, 8054, 12374, 13292, 104, 15350, 110, 14282, 31982, 17402, 18212, 140, 24050, 152, 25220, 29990, 28202, 32234, 33392, 182, 43262, 194, 44972, 200, 47564
Offset: 2

Views

Author

Vladimir Shevelev, May 16 2014

Keywords

Comments

Note that the "small terms" {6,8,14,20,32,44,...} correspond to a(n) for which {a(n)-3, a(n)-1} is a twin pair such that the corresponding positions form sequence A029707.
If we change the definition to consider k for which {k-3, k-1} is not a twin pair, we obtain a closely related sequence 12,38,80,212,224,530,440,854,1250,1460,1742,... which shows a "model behavior" of A242490, if there are only a finite number of twin primes. - Vladimir Shevelev, May 19 2014

Examples

			Let n=2, prime(2)=3. Then lpf(6-3)=3, but lpf(6-1)=5>3. Since k=6 is the smallest such k, a(2)=6.
		

Crossrefs

Programs

  • PARI
    a(n)=my(p=prime(n),k=p+3); while(factor(k-3)[1,1]

Extensions

Correction and more terms from Peter J. C. Moses, May 19 2014

A252375 a(n) = smallest r such that r^k <= spf(n) and gpf(n) < r^(k+1), for some k >= 0, where spf and gpf (smallest and greatest prime factor of n) are given by A020639(n) and A006530(n).

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 8, 3, 2, 2, 2, 2, 6, 3, 12, 2, 2, 2, 14, 2, 8, 2, 6, 2, 2, 12, 18, 2, 2, 2, 20, 14, 6, 2, 8, 2, 12, 3, 24, 2, 2, 2, 6, 18, 14, 2, 2, 4, 8, 20, 30, 2, 6, 2, 32, 3, 2, 4, 12, 2, 18, 24, 8, 2, 2, 2, 38, 3, 20, 4, 14, 2, 6, 2, 42, 2, 8, 5, 44, 30, 12, 2, 6, 4, 24, 32
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2014

Keywords

Crossrefs

A252374 gives the corresponding exponents.
Cf. A251726 (those n for which a(n) <= A006530(n)).
Cf. A251727 (those n > 1 for which a(n) = A006530(n)+1).

Programs

  • Scheme
    (define (A252375 n) (let ((spf (A020639 n)) (gpf (A006530 n))) (let outerloop ((r 2)) (let innerloop ((rx 1)) (cond ((and (<= rx spf) (< gpf (* r rx))) r) ((<= rx spf) (innerloop (* r rx))) (else (outerloop (+ 1 r))))))))
    (define (A252375 n) (let ((x (A251725 n))) (if (= 1 x) 2 x))) ;; Alternatively, using the implementation of A251725.

Formula

If A251725(n) = 1, a(n) = 2, otherwise a(n) = A251725(n).
Other identities. For all n >= 1:
a(n) = a(A066048(n)). [The result depends only on the smallest and the largest prime factor of n.]

A284260 Greatest prime dividing n which is less than A020639(n)^2, where A020639(n) is the smallest prime dividing n, a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 2, 11, 3, 13, 2, 5, 2, 17, 3, 19, 2, 7, 2, 23, 3, 5, 2, 3, 2, 29, 3, 31, 2, 3, 2, 7, 3, 37, 2, 3, 2, 41, 3, 43, 2, 5, 2, 47, 3, 7, 2, 3, 2, 53, 3, 11, 2, 3, 2, 59, 3, 61, 2, 7, 2, 13, 3, 67, 2, 3, 2, 71, 3, 73, 2, 5, 2, 11, 3, 79, 2, 3, 2, 83, 3, 17, 2, 3, 2, 89, 3, 13, 2, 3, 2, 19, 3, 97, 2, 3, 2, 101, 3, 103, 2, 7, 2, 107, 3, 109
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2017

Keywords

Crossrefs

Cf. A251726 (gives n > 1 such that a(n) = A006530(n)).

Programs

  • Mathematica
    Table[Last[Function[s, Select[s, # < First[s]^2 &]]@ FactorInteger[n][[All, 1]] /. {} -> {1}], {n, 109}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1));
    a(n) = if(A(n)==1, 1, A(n)*a(n/A(n)));
    gpf(n) = if(n>1, vecmax(factor(n)[,1]),1);
    for(n=1, 150, print1(gpf(n/a(n)),", ")) \\ Indranil Ghosh, Mar 24 2017, after David A. Corneth
    
  • Python
    from sympy import primefactors
    def A(n):
        for i in primefactors(n):
            if i>min(primefactors(n))**2: return i
        return 1
    def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n))
    def gpf(n): return 1 if n<2 else max(primefactors(n))
    print([gpf(n//a(n)) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
  • Scheme
    (define (A284260 n) (A006530 (A284255 n)))
    

Formula

a(n) = A006530(A284255(n)).

A325965 a(n) is the least k >= A020639(n) such that n-k and n-(sigma(n)-k) are relatively prime.

Original entry on oeis.org

1, 2, 4, 2, 6, 5, 8, 2, 3, 3, 12, 3, 14, 3, 4, 2, 18, 2, 20, 3, 4, 3, 24, 5, 5, 3, 4, 27, 30, 5, 32, 2, 4, 3, 6, 2, 38, 3, 4, 3, 42, 5, 44, 3, 4, 3, 48, 3, 7, 2, 4, 3, 54, 5, 6, 3, 4, 3, 60, 5, 62, 3, 4, 2, 6, 5, 68, 5, 4, 3, 72, 2, 74, 3, 4, 3, 8, 5, 80, 3, 3, 3, 84, 3, 6, 3, 4, 3, 90, 5, 8, 3, 4, 3, 6, 5, 98, 2, 4, 2
Offset: 1

Views

Author

Antti Karttunen, May 29 2019

Keywords

Crossrefs

Programs

  • PARI
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A325965(n) = { my(s=sigma(n)); for(i=A020639(n), s, if(1==gcd(n-i, n-(s-i)), return(i))); };

Formula

a(n) = A000203(n) - A325966(n).
For all n:
a(A000396(n)) = A000396(n)-1.
a(n) >= A325817(n).

A325966 a(n) is the largest i <= sigma(n)-A020639(n) such that n-i and n-(sigma(n)-i) are relatively prime.

Original entry on oeis.org

0, 1, 0, 5, 0, 7, 0, 13, 10, 15, 0, 25, 0, 21, 20, 29, 0, 37, 0, 39, 28, 33, 0, 55, 26, 39, 36, 29, 0, 67, 0, 61, 44, 51, 42, 89, 0, 57, 52, 87, 0, 91, 0, 81, 74, 69, 0, 121, 50, 91, 68, 95, 0, 115, 66, 117, 76, 87, 0, 163, 0, 93, 100, 125, 78, 139, 0, 121, 92, 141, 0, 193, 0, 111, 120, 137, 88, 163, 0, 183, 118, 123, 0
Offset: 1

Views

Author

Antti Karttunen, May 29 2019

Keywords

Crossrefs

Programs

  • PARI
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A325966(n) = { my(s=sigma(n)); forstep(i=s-A020639(n), 0, -1, if(1==gcd(n-i, n-(s-i)), return(i))); };

Formula

a(n) = A000203(n) - A325965(n).
For all n:
a(A000396(n)) = A000396(n)+1.
a(n) <= A325818(n).

A366825 Numbers of the form p^2 * m, squarefree m > 1, prime p < lpf(m), where lpf(m) = A020639(m).

Original entry on oeis.org

12, 20, 28, 44, 45, 52, 60, 63, 68, 76, 84, 92, 99, 116, 117, 124, 132, 140, 148, 153, 156, 164, 171, 172, 175, 188, 204, 207, 212, 220, 228, 236, 244, 260, 261, 268, 275, 276, 279, 284, 292, 308, 315, 316, 325, 332, 333, 340, 348, 356, 364, 369, 372, 380, 387
Offset: 1

Views

Author

Michael De Vlieger, Dec 15 2023

Keywords

Comments

Proper subset of A126706. Proper subset of A364996.
Prime signature of a(n) is 2 followed by at least one 1.
Numbers of the form A065642(A120944(k)) for some k.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} (1/p^2) * (Product_{primes q <= p} (q/(q+1))) = 0.155068688392... . - Amiram Eldar, Dec 18 2023

Examples

			a(1) = 12 = 4*3 = p^2 * m, squarefree m > 1; sqrt(4) < lpf(3), i.e., 2 < 3.
a(5) = 45 = 9*5 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(5), i.e., 3 < 5.
Prime powers p^k, k > 2, are not in the sequence since m = p^(k-2) is not squarefree and p = lpf(m).
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 1 &], First[#1] == 2 && Union[#2] == {1} & @@ TakeDrop[FactorInteger[#][[All, -1]], 1] &]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); #e > 1 && e[1] == 2 && vecmax(e[2..#e]) == 1;} \\ Amiram Eldar, Dec 18 2023

A117358 a(n) = A032742(A032742(A032742(n))) = ((n/lpf(n))/lpf(n/lpf(n)))/lpf((n/lpf(n))/lpf(n/lpf(n))), where lpf=A020639, least prime factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 5, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 10, 3, 1, 1, 7, 1, 1, 1, 11, 1, 5, 1, 1, 1, 1, 1, 12, 1, 1, 1, 5, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A032742(A032742(A032742(n))) = A032742(A054576(n)) = A054576(n)/A115561(n).
a(A037144(n)) = 1, a(A033987(n)) > 1.
Previous Showing 11-20 of 1048 results. Next