A335738
Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is a power of 2.
Original entry on oeis.org
2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256, 260, 264, 268, 272
Offset: 1
6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is not in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is not in the sequence.
Numbers in the even bisection of
A336322.
Row m of
A352780 essentially gives the defined factorization of m.
-
f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 300], FixedPointList[s, #] [[-3]] == 2 &] (* Amiram Eldar, Nov 27 2020 *)
-
is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, 0, if(o == 1, n > 1, floor(logint(e, 2)) > floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024
A085554
Greater of twin primes of the form x^2+2, x^2+4.
Original entry on oeis.org
5, 13, 229, 1093, 2029, 3253, 13693, 21613, 59053, 65029, 91813, 140629, 178933, 199813, 205213, 227533, 328333, 567013, 700573, 804613, 815413, 1071229, 2241013, 3629029, 4223029, 4347229, 4809253, 5212093, 5919493, 6185173
Offset: 1
-
Transpose[Select[Table[x^2+{2,4},{x,5000}],AllTrue[#,PrimeQ]&]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 15 2015 *)
-
is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4) \\ or is_A067201(x)&&is_A007591(x)
A085554 = apply(A087475,select(is_A086381,vector(9999,n,n))) \\ A087475=x->x^2+4.
write(f="b085554.txt",c=1," 5"); forstep(x=3,1e6,6,is_A086381(x)&&write(f,c++" "x^2+4))
\\ M. F. Hasler, Jan 18 2015
A335740
Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is not a power of 2.
Original entry on oeis.org
3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1
6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is not in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is in the sequence.
With {1}, numbers in the odd bisection of
A336322.
-
f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 100], FixedPointList[s, #] [[-3]] > 2 &] (* Amiram Eldar, Nov 27 2020 *)
-
is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, n > 1, if(o == 1, e < 1, floor(logint(e, 2)) <= floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024
A175430
a(n) = (n-1)! * (n+1)!.
Original entry on oeis.org
2, 6, 48, 720, 17280, 604800, 29030400, 1828915200, 146313216000, 14485008384000, 1738201006080000, 248562743869440000, 41758540970065920000, 8142915489162854400000, 1824013069572479385600000, 465123332740982243328000000, 133955519829402886078464000000
Offset: 1
a(5) = (5-1)! * (5+1)! = 4! * 6! = 24 * 720 = 17280.
a(5) = ((1*2) * (2*3) * (3*4) * (4*5) * (5*6)) / 5 = 17280.
-
#[[1]] #[[3]] & /@ Partition[Range[0, 20]!, 3, 1] (* Harvey P. Dale, Jun 20 2017 *)
Table[(n - 1)! (n + 1)!, {n, 20}] (* or *) Table[Gamma[n] Gamma[n + 2], {n, 20}] (* Eric W. Weisstein, Jul 30 2018 *)
-
a(n) = (n-1)! * (n+1)!; \\ Michel Marcus, Feb 03 2016
A067665
The start of a record-setting run of consecutive integers i with distinct A001222(i).
Original entry on oeis.org
1, 6, 15, 60, 726, 6318, 189375, 755968, 683441871, 33714015615
Offset: 1
The values of f(n) for n=1 to 15 are 2,1,2,2,2,3,3,2,1,3,2,3,2,1,4. Records occur at f(1)=2, f(6)=3 and f(15)=4.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; f[n_] := For[k=1; s={bigomega[n]}, True, k++, If[MemberQ[s, z=bigomega[n+k]], Return[k], AppendTo[s, z]]]; For[n=1; max=0, True, n++, If[f[n]>max, Print[n, " ", max=f[n]]]]
-
a(n,lim=1e12,startAt=1)={
forstep(i=startAt-1,lim,10^6-n,
my(v=vectorsmall(min(10^6,lim\1-i),j,bigomega(j+i)));
for(j=n,#v,if(#vecsort(v[j-n+1..j],,8)==n,return(j+i-n+1)))
)
}; \\ Charles R Greathouse IV, Jul 03 2013
A155705
Triangle read by rows where T(m,n) = 2*m*n + m + n + 2.
Original entry on oeis.org
6, 9, 14, 12, 19, 26, 15, 24, 33, 42, 18, 29, 40, 51, 62, 21, 34, 47, 60, 73, 86, 24, 39, 54, 69, 84, 99, 114, 27, 44, 61, 78, 95, 112, 129, 146, 30, 49, 68, 87, 106, 125, 144, 163, 182, 33, 54, 75, 96, 117, 138, 159, 180, 201, 222, 36, 59, 82, 105, 128, 151
Offset: 1
Triangle begins:
6;
9, 14;
12, 19, 26;
15, 24, 33, 42;
18, 29, 40, 51, 62;
21, 34, 47, 60, 73, 86;
24, 39, 54, 69, 84, 99, 114;
27, 44, 61, 78, 95, 112, 129, 146;
30, 49, 68, 87, 106, 125, 144, 163, 182;
33, 54, 75, 96, 117, 138, 159, 180, 201, 222; etc.
-
[2*n*k + n + k + 2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 2; Table[t[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A210976
Square array T(n,k), n>=1, k>=1, read by antidiagonals in which column k lists the positive integers whose number of divisors is not k.
Original entry on oeis.org
2, 3, 1, 4, 4, 1, 5, 6, 2, 1, 6, 8, 3, 2, 1, 7, 9, 5, 3, 2, 1, 8, 10, 6, 4, 3, 2, 1, 9, 12, 7, 5, 4, 3, 2, 1, 10, 14, 8, 7, 5, 4, 3, 2, 1, 11, 15, 10, 9, 6, 5, 4, 3, 2, 1, 12, 16, 11, 11, 7, 6, 5, 4, 3, 2, 1, 13, 18, 12, 12, 8, 7, 6, 5, 4, 3, 2, 1, 14, 20
Offset: 1
Column 2 lists the nonprimes A018252 because they are the positive integers whose number of divisors is not 2.
Array begins:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
3, 4, 2, 2, 2, 2, 2, 2, 2,
4, 6, 3, 3, 3, 3, 3, 3,
5, 8, 5, 4, 4, 4, 4,
6, 9, 6, 5, 5, 5,
7, 10, 7, 7, 6,
8, 12, 8, 9,
9, 14, 10,
10, 15,
11,
A179442
a(n) = ((n-1)! * (n+1)!) / n.
Original entry on oeis.org
2, 3, 16, 180, 3456, 100800, 4147200, 228614400, 16257024000, 1448500838400, 158018273280000, 20713561989120000, 3212195459235840000, 581636820654489600000, 121600871304831959040000
Offset: 1
a(5) = ((5-1)! * (5+1)!) / 5 = (4! * 6!) / 5 = (24 * 720) / 5 = 17280 / 5 = 3456.
a(5) = ((5 -1)!^2) * (5+1) = 24^2 * 6 = 3456.
A229212
Square array of numerators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.
Original entry on oeis.org
2, 3, 9, 4, 25, 64, 5, 49, 343, 625, 6, 81, 1000, 6561, 7776, 7, 121, 2197, 28561, 161051, 117649, 8, 169, 4096, 83521, 1048576, 4826809, 2097152, 9, 225, 6859, 194481, 4084101, 47045881, 170859375, 43046721, 10, 289
Offset: 1
Table of fractions begins:
2, 3/2, 4/3, 5/4, ...
9/4, 25/16, 49/36, 81/64, ...
64/27, 343/216, 1000/729, 2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of numerators begins:
2, 3, 4, 5, ...
9, 25, 49, 81, ...
64, 343, 1000, 2197, ...
625, 6561, 28561, 83521, ...
...
Triangle of antidiagonals begins:
2;
3, 9;
4, 25, 64;
5, 49, 343, 625;
...
-
t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Numerator
A338112
Least number that is both the sum and product of n distinct positive integers.
Original entry on oeis.org
1, 3, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 1
a(1) = 1 because we define sums and products as sum(m) := prod(m) := m for all integers m in this case where these normally-binary operations only have one operand.
a(3) = 6 because 6 = 1+2+3 = 1*2*3 (with all the distinct positive integers the same in the sum and the product only for this term and a(1)).
a(5) = 120 because 120 = 1+2+3+4+110 (= ... = 22+23+24+25+26) = 1*2*3*4*5.
-
Array[If[# <= 2, (#^2 - #)/2 &[# + 1], #!] &, 22] (* Michael De Vlieger, Oct 15 2020 *)
With[{nn=30},Rest[CoefficientList[Series[x (2+x-x^2)/(2(1-x)),{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Aug 10 2021 *)
-
a(n) = if(n<1, , if(n==2, 3, n!))
Comments