cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A287960 Numbers that are the sum of two centered triangular numbers (A005448).

Original entry on oeis.org

2, 5, 8, 11, 14, 20, 23, 29, 32, 35, 38, 41, 47, 50, 56, 62, 65, 68, 74, 77, 83, 86, 89, 92, 95, 104, 110, 113, 116, 119, 128, 131, 137, 140, 146, 149, 155, 167, 170, 173, 176, 182, 185, 194, 197, 200, 203, 209, 212, 218, 221, 230, 236, 239, 245, 251, 254, 263, 266, 272, 275, 278, 281, 284, 293, 299
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 300; f[x_] := Sum[x^(3 k (k - 1)/2 + 1), {k, 1, 20}]^2; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]]

Formula

8*a(n) = 10+3*A097269(n). - R. J. Mathar, Jul 26 2017

A357504 Numbers that are the sum of two distinct triangular numbers.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 11, 13, 15, 16, 18, 21, 22, 24, 25, 27, 28, 29, 31, 34, 36, 37, 38, 39, 42, 43, 45, 46, 48, 49, 51, 55, 56, 57, 58, 60, 61, 64, 65, 66, 67, 69, 70, 72, 73, 76, 78, 79, 81, 83, 84, 87, 88, 91, 92, 93, 94, 97, 99, 100, 101, 102, 105, 106, 108
Offset: 1

Views

Author

Stefano Spezia, Oct 01 2022

Keywords

Comments

This sequence differs from A020756 in excluding the terms that are twice a triangular number and that cannot be expressed as a sum of two distinct triangular numbers: 0, 2, 12, 20, 30, 90, 110, 132, ... = 2*A357529.

Crossrefs

Cf. A000217 (subsequence, excluding 0), A020756 (supersequence), A339952, A357505 (complement).
Cf. A357529.

Programs

  • Mathematica
    TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; kn=0; For[k=0, k<=110, k++, For[h=0, A000217[h]A000217[h]] && k>kn, AppendTo[a, k]; kn=k]]]; a (* Stefano Spezia, Nov 06 2022 *)

Formula

a(n) = (A339952(n) - 1)/4.

A357529 Triangular numbers k such that 2*k cannot be expressed as a sum of two distinct triangular numbers.

Original entry on oeis.org

0, 1, 6, 10, 15, 45, 55, 66, 91, 120, 136, 231, 276, 300, 406, 435, 496, 561, 595, 630, 741, 780, 820, 861, 1081, 1225, 1326, 1431, 1830, 2016, 2080, 2145, 2211, 2415, 2485, 2701, 2850, 3240, 3321, 3486, 3655, 3916, 4005, 4465, 4560, 4950, 5050, 5356, 5460, 5565
Offset: 1

Views

Author

Stefano Spezia, Oct 02 2022

Keywords

Comments

Subset of even terms of A357505, divided by 2. - Michel Marcus, Nov 05 2022

Crossrefs

Cf. A000217 (supersequence), A002378.
Half of the complement of A357504 in A020756.
Half of the complement of A020757 in A357505.
Subsequence of A008851.

Programs

  • Mathematica
    TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=0, k<=105, k++, ok=1; For[h=0, h<2k, h++, If[TriangularQ[2*A000217[k] - A000217[h]] && k!=h, ok=0]]; If[ok==1, AppendTo[a,k(k+1)/2]]]; a (* Stefano Spezia, Nov 05 2022 *)

A111908 Numbers that are not the sum of a prime and a nonzero triangular number.

Original entry on oeis.org

1, 2, 7, 36, 61, 105, 171, 210, 211, 216, 325, 351, 406, 528, 561, 630, 741, 780, 990, 1081, 1176, 1275, 1596, 1711, 1830, 1953, 2016, 2145, 2346, 2628, 2775, 3003, 3081, 3240, 3321, 3655, 3741, 3916, 4278, 4371, 4465, 4560, 4851, 5253, 5460, 5565, 5886
Offset: 1

Views

Author

Stefan Steinerberger, Nov 25 2005

Keywords

Comments

Can anybody prove or disprove a(n) = O(n^c) for some constant c?
Jonathan Vos Post has observed that every term in A076768 also occurs in this sequence.

Examples

			7 = 1+6 = 2+5 = 3+4; 7 is in the sequence because there is no sum where the first element is a prime and the second one a triangular number.
		

Crossrefs

Programs

  • Mathematica
    lim=6000;plim=PrimePi[lim];tlim=Ceiling[Sqrt[2lim]];Complement[Range[lim],Union[Flatten[Table[Prime[i]+PolygonalNumber[j],{i,plim},{j,tlim}]]]] (* James C. McMahon, Jun 04 2024 *)

Extensions

a(47) and offset corrected by Donovan Johnson, Feb 09 2013

A113796 Numbers k such that k = T(x) + T(y) where T(m) is the m-th triangular number and k is concatenate(x, y) in base 10.

Original entry on oeis.org

190, 191, 19900, 19901, 90415, 585910, 1201545, 1414910, 1501726, 1909415, 1999000, 1999001, 2442196, 7003676, 7693846, 14745226, 28296970, 30307171, 42009156, 47748526, 61549231, 63249300, 78049756, 82749850, 84559880, 115449880, 117259850, 121959756
Offset: 1

Views

Author

Giovanni Resta, Jan 21 2006

Keywords

Comments

Contains (2*10^i - 1)*10^i and (2*10^i - 1)*10^i + 1 for all i >= 1. - Michael S. Branicky, Jan 22 2022

Examples

			90415 = T(90) + T(415).
		

Crossrefs

Cf. A000217.
Subsequence of A020756.

Programs

  • Mathematica
    lst = {}; t[n_] := n(n + 1)/2; Do[p=10; While[n > p, If[t[Mod[n, p]] + t[Floor[n/p]] == n, AppendTo[lst, n]]; p*= 10], {n, 10^6}]; lst
  • Python
    def T(n): return n*(n+1)//2
    def ok(n):
        if n < 10: return False
        s = str(n)
        splits = ((int(s[:i]), int(s[i:])) for i in range(1, len(s)))
        return any(n == T(x) + T(y) for x, y in splits)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jan 22 2022

Extensions

a(26)-a(28) from Michael S. Branicky, Jan 22 2022

A185980 Nontriangular numbers that are the sum of two (positive) triangular numbers in more than one way.

Original entry on oeis.org

16, 31, 42, 46, 51, 56, 72, 76, 81, 94, 106, 111, 121, 123, 126, 133, 141, 146, 156, 157, 172, 174, 181, 186, 191, 196, 198, 211, 216, 225, 226, 237, 241, 246, 256, 259, 268, 281, 286, 289, 291, 297, 301, 306, 310, 315, 321, 326, 328, 331, 336, 342, 346, 354
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2011

Keywords

Comments

A000217(0)=0, but it will not appear as a summand.
A185979 uses only positive triangular summands, and includes triagonal (or body diagonal) numbers like 231, 276, 406, 666, ...

Examples

			16 = 15 + 1 = 10 + 6.
81 = 45 + 36 = 66 + 15 = 78 + 3.
		

Crossrefs

Cf. A000217, A020756 (sums of two triangular numbers), A051533 (sums of two positive triangular numbers), A064816, A185978, A185979.

Formula

See the one given for A185978, taking into account multiplicities.

A191766 Integers that are a sum of two triangular numbers and also the sum of two square numbers (including zeros).

Original entry on oeis.org

0, 1, 2, 4, 9, 10, 13, 16, 18, 20, 25, 29, 34, 36, 37, 45, 49, 58, 61, 64, 65, 72, 73, 81, 90, 97, 100, 101, 106, 121, 130, 136, 137, 144, 146, 148, 153, 157, 160, 164, 169, 181, 193, 196, 200, 202, 205, 208, 218, 225, 226, 232, 234, 241, 244, 245
Offset: 1

Views

Author

Ant King, Jun 22 2011

Keywords

Comments

This sequence is infinite as, for example, all integers of the form m^8+m^4-2*m^2*n^2+12*m^6*n^2+n^4+38*m^4*n^4+12*m^2*n^6+n^8 are included.
The sequence includes all squares, since n^2 = T(n-1) + T(n), where T(n) = A000217(n) is the n-th triangular number. - Franklin T. Adams-Watters, Jun 24 2011

Examples

			9 is the sum of two triangular numbers: 6 + 3, and also two squares: 9 + 0. Hence 9 is in the sequence.
		

Crossrefs

Cf. A000217, A000290, A191765, intersection of A001481 and A020756.

Programs

  • Mathematica
    data=Length[Reduce[a^2+b^2==1/2 c (c+1)+1/2 d(d+1) == # && a>=0 && b>=0 && c>=0 && d>=0,{a,b,c,d},Integers]] &/@Range[0,250];Prepend[DeleteCases[Table[If[data[[k]]>0,k-1,0],{k,1,Length[data]}],0],0]
    With[ {n = 250}, Pick[ Range[ 0, n], {} != FindInstance[ a*a + b*b == # && c (c + 1) + d (d + 1) == 2 # && a >= 0 && b >= 0 && c >= 0 && d >= 0, {a, b, c, d}, Integers] & /@ Range[ 0, n]]] (* Michael Somos, Jun 24 2011 *)

A119961 Semiprimes that are the sum of two triangular numbers.

Original entry on oeis.org

4, 6, 9, 10, 15, 21, 22, 25, 34, 38, 39, 46, 49, 51, 55, 57, 58, 65, 69, 87, 91, 93, 94, 106, 111, 115, 119, 121, 123, 133, 141, 142, 146, 159, 169, 177, 183, 202, 205, 213, 214, 218, 219, 226, 235, 237, 249, 253, 254, 259, 262, 265, 267, 274, 289, 291, 295
Offset: 1

Views

Author

Jonathan Vos Post, Aug 02 2006

Keywords

Comments

Semiprime analog of A117048 Prime numbers that are expressible as the sum of two triangular numbers.

Crossrefs

Programs

  • Mathematica
    With[{nn=60},Take[Union[Select[Total/@Tuples[Accumulate[Range[0,nn]],2],PrimeOmega[ #] ==2&]],nn]] (* Harvey P. Dale, Nov 04 2020 *)

Formula

A020756 intersection A001358.

Extensions

Missing a(2) and a(19)-a(53) from Giovanni Resta, Jun 13 2016

A274794 Numbers n such that n^3 is the sum of two triangular numbers in exactly one way.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 10, 19, 24, 25, 34, 37, 39, 42, 49, 54, 55, 72, 73, 78, 85, 87, 93, 94, 102, 108, 109, 118, 138, 142, 147, 157, 160, 165, 168, 175, 192, 195, 202, 210, 214, 220, 228, 232, 243, 247, 249, 250, 252, 253, 258, 267, 273, 274, 279, 289, 297, 312, 333
Offset: 1

Views

Author

Altug Alkan, Jul 07 2016

Keywords

Comments

A115104 is a subsequence. Terms such that 4*n^3 + 1 is not prime are 24, 337, 457, 750, 840, 1015, ...

Examples

			3 is a term because 3^3 = 27 = 6 + 21.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 333, Length[PowersRepresentations[4 #^3 + 1, 2, 2]] == 1 &] (* after Ant King at A052343, or *)
    nn = 20; t = (#^2 + #)/2 & /@ Range[0, nn^3]; Select[Range[0, nn], Function[n, Count[Transpose@ {#, n^3 - #} &@ Range[0, Floor[n^3/2]], k_ /; Times @@ Boole@ Map[MemberQ[t, #] &, k] == 1] == 1]] (* Michael De Vlieger, Jul 07 2016 *)
  • PARI
    a052343(n) = sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2));
    lista(nn) = for(n=0, nn, if(a052343(n^3) == 1, print1(n, ", ")));
Previous Showing 11-19 of 19 results.