cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A345253 Maximal Fibonacci tree: Arrangement of the positive integers as labels of a complete binary tree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 13, 11, 14, 16, 21, 12, 15, 17, 22, 18, 23, 26, 34, 19, 24, 27, 35, 29, 37, 42, 55, 20, 25, 28, 36, 30, 38, 43, 56, 31, 39, 44, 57, 47, 60, 68, 89, 32, 40, 45, 58, 48, 61, 69, 90, 50, 63, 71, 92, 76, 97, 110, 144, 33, 41, 46, 59, 49
Offset: 1

Views

Author

J. Parker Shectman, Jun 12 2021

Keywords

Comments

Every positive integer occurs exactly once, so that, as a sequence, a(n) is a permutation of the positive integers.
Descending from the root node 1, generate tree by outer composition of L(n) = n + F(Finv(n)) and R(n) = n + F(Finv(n) + 1), respectively, according to left or right branching, where F(n) = A000045(n) are the Fibonacci numbers and Finv(n) = A130233(n) is the 'lower' Fibonacci inverse. This produces each number by maximal Fibonacci expansion (cf. example below of Method 2, entry A343152, and links).
(Level of tree): The number of terms in this expansion of n is the level of the tree on which n appears, A112310(n-1) + 1 = A200648(n+1). The number of terms in the expansion of a(n) is floor(log_2(n)) + 1 = A113473(n) = A070939(n) = A029837(n+1).
"Maximal Fibonacci expansion" maximizes the sum of coefficients over all Fibonacci numbers (of positive index), allowing both F(1) = 1 and F(2) = 1. Thus, it is just an expansion and not a representation (like "greedy" and "lazy"), as it "breaks the rule" by using two bits that correspond to elements of equal value, rather than using distinct basis elements (link). This reveals connections to the cf. sequences: Binary strings that emerge in lexicographic order from "maximal Fibonacci gaps" (example), binary trees of the positive integers, and I-D arrays "harvested" from the trees. To define the expansion uniquely, always include F(1), so that the expansion of positive integer n equals F(1) for n = 1 and F(1) prepended to the lazy Fibonacci representation of n-1 for n > 1. Hence, a(1) = 1, and for n > 1, a(n) = A095903(n-1) + 1. The "redundant" expansion arranges the positive integers in the single binary tree {T(n,k)}, rather than the two trees at A255773 and A255774 that result from representation (see link).
(Left-to-right order in tree): Each F(t)-sized block (F(t+1), ..., F(t+2) - 1) of successive positive integers ("Fibonacci cohort" t) appears in right-to-left order in the tree as reordered in A343152, where elements of each cohort appear consecutively (see link).
Descending from the root node 1, generate tree by the inner composition of A026351 and A026352, that is, one plus the sequences of lower and upper Wythoff numbers, A000201 and A001950, respectively, according to left or right branching (see example below of Method 1 and links).
Generate tree from (one plus) the number of (initial) zeros on the positive integers for the outer composition of sequences, A060143 and A060144, respectively, according to left or right branching descending from the identity (c.f example below of Method 3 and links).
The lower Wythoff numbers, A000201, appear exclusively in the 1st, 3rd, 5th, ... right clades of the tree, while the upper Wythoff numbers A001950, appear exclusively in the 2nd, 4th, 6th, ... right clades of the tree. Here, the k-th right clade comprises the nodes at positions 2^(k+1) and 2^k + 1, together with all descendants of the latter (link).
(Duality with tree A232560, and related arrays): Consider the labeled binary trees a(n) = A232560(A059893(n)) and A232560(n) = a(A059893(n)). Labels along maximal straight paths that always branch left in a(n) give rows of array A345252, while labels along maximal straight paths that always branch left in A232560 give rows of array A083047.
Sorting the labels from each successive right clade of the binary tree a(n) gives the successive columns of A083047, while sorting labels from each successive right clade of A232560 gives each successive column of A345252. This makes the trees a(n) and A232560 "blade-duals," blade being a contraction of branch-clade (see entry for A345254 and link). A200648(n)+1 gives the level of the tree on which elements of array first-columns A345252(n,1) and A083047(n,1) appear.
(Palindromes and coincidence of elements): Trees a(n) and A232560 coincide when the sequence of left and right branching is a palindrome: a(A329395(n)) = A232560(A329395(n)). As Kimberling notes (cf. A059893), this happens at fixed points of A059893(n) or, equivalently, at n for which A081242(n) is a palindrome.
The inverse permutation of a(n) as a sequence can be read from a "tetrangle" or "irregular triangle" tableau with F(t) (Fibonacci number) entries on each row t, for t = 1, 2, 3, ..., in which an entry on row t is 2*x the entry x immediately above it on row t-1, if such exists, or otherwise 2*x + 1 the entry x in the corresponding position on row t-2 (thus generating new rows as in A243571 but without sorting the numbers into increasing order, linked reference):
1,
2,
3, 4,
5, 6, 8,
7, 9, 10, 12, 16,
11, 13, 17, 14, 18, 20, 24, 32,
...
With the right-justified tableau substituted by a left-justified tableau, the same procedure yields the inverse permutation for the "minimal Fibonacci tree," A048680(A059893(n)), the "cohort-dual" tree of a(n), where "cohort" t is the F(t)-sized block of successive entries in the tableau (see entry for A345252, linked reference).
(Coincidence of elements): a(A020988(n)) = A048680(A059893(A020988(n))) = A099919(n) and a(A020989(n)) = A048680(A059893(A020989(n))) = A049651(n). Collectively, a(A061547(n)) = A048680(A059893(A061547(n))) = union(A049651(n), A099919(n)).
With two types of duality, the tree forms a quartet of binary-tree arrangements of the positive integers, together with its blade dual A232560, its cohort dual A048680(A059893), and blade dual A048680 of the latter.
Order in the tree is "memory-less": Let a(n) and a(m) label nodes at positions n and m, respectively. Let d1 and d2 be two descending paths, i.e., sequences branching left or right from a starting node. (Nodal positions for the left and right children of the node at position p are given by 2*p and 2*p + 1, resp., and d1 and d2 are compositions of these.) Then a(d1(n)) < a(d2(n)) if and only if a(d1(m)) < a(d2(m)) (linked reference).

Examples

			As a complete binary tree:
                    1
           /                 \
          2                   3
      /       \          /        \
     4         5        6          8
    / \       / \      / \        / \
   7    9    10   13   11   14   16   21
  / \  / \  /  \ /  \ /  \ /  \ /  \ /  \
  ...
By maximal Fibonacci expansion:
                                        F(1)
                      /                                       \
                F(1) + F(2)                               F(1) + F(3)
           /                    \                    /                  \
  F(1) + F(2) + F(3)   F(1) + F(2) + F(4)   F(1) + F(3) + F(4)   F(1) + F(3) + F(5)
  ...
"Fibonacci gaps," or differences between successive indices in maximal Fibonacci expansion above, are A007931(n-1) for n > 1 (see link):
                   *
          /                  \
         1                    2
     /       \           /        \
    11        12        21        22
   /  \      /  \      /  \      /  \
  111  112  121  122  211  212  221  222
  / \  / \  / \  / \  / \  / \  / \  / \
  ...
In examples of the three methods below:
Branch left-right-right down the tree to arrive at nodal position n = 2*(2*(2*1) + 1) + 1 = 11;
Branch right-left-left down the tree to arrive at nodal position n = 2*(2*(2*1 + 1)) = 12.
Tree by inner composition of (one plus) the lower and upper Wythoff sequences, A000201 and A001950 (Method 1):
a(11) = A000201(A001950(A001950(1) + 1) + 1) + 1 = 13.
a(12) = A001950(A000201(A000201(1) + 1) + 1) + 1 = 11.
Tree by (outer) composition of branching functions L(n) = n + F(Finv(n)) and R(n) = n + F(Finv(n) + 1), where F(n) = A000045(n) and Finv(n) = A130233(n) (Method 2):
a(11) = R(R(L(1))) = 13.
a(12) = L(R(R(1))) = 11.
Tree by outer composition of A060143 and A060144 (Wythoff inverse sequences) (Method 3):
a(11) = 13, position of first nonzero in A060144(A060144(A060143(m))) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ..., for m = 1, 2, 3, ....
a(12) = 11, position of first nonzero in A060143(A060143(A060144(m))) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ..., for m = 1, 2, 3, ....
		

Crossrefs

Programs

  • Mathematica
    (* For binary tree implementations, see supporting file under LINKS *)
    a[n_] := (x = 0; y = 0; BDn = Reverse[IntegerDigits[n, 2]]; imax = Length[BDn] - 1; For[i = 0, i <= imax, i++, {x, y} = {y + 1, x + y}; If[BDn[[i + 1]] == 1, {x, y} = {y, x + y}]]; y);
    (* Adapted from PARI code of Kevin Ryde *)
  • PARI
    a(n) = my(x=0,y=0); for(i=0,logint(n,2), [x,y]=[y+1,x+y]; if(bittest(n,i), [x,y]=[y,x+y])); y; \\ Kevin Ryde, Jun 19 2021

Formula

a(1) = 1 and for n > 1, a(n) = A095903(n-1) + 1.
a(n) = A232560(A059893(n)).

A345290 a(n) is obtained by replacing 2^k in binary expansion of n with Fibonacci(-k-2).

Original entry on oeis.org

0, -1, 2, 1, -3, -4, -1, -2, 5, 4, 7, 6, 2, 1, 4, 3, -8, -9, -6, -7, -11, -12, -9, -10, -3, -4, -1, -2, -6, -7, -4, -5, 13, 12, 15, 14, 10, 9, 12, 11, 18, 17, 20, 19, 15, 14, 17, 16, 5, 4, 7, 6, 2, 1, 4, 3, 10, 9, 12, 11, 7, 6, 9, 8, -21, -22, -19, -20, -24
Offset: 0

Views

Author

Rémy Sigrist, Jun 13 2021

Keywords

Comments

This sequence is a variant of A022290; here we consider Fibonacci numbers with negative indices (A039834), there Fibonacci numbers with positive indices (A000045).
After the initial 0, the sequence alternates runs of positive terms and runs of negative terms, the k-th run having 2^(k-1) terms.

Examples

			For n = 3:
- 3 = 2^1 + 2^0,
- so a(3) = A039834(2+1) + A039834(2+0) = 2 - 1 = 1.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=fibonacci(-2-e)); v }

Formula

a(n) = A022290(A063695(n)) - A022290(A063694(n)).
a(n) = A022290(n) iff n belongs to A062880.
a(n) = -A022290(n) iff n belongs to A000695.
a(n) = 0 iff n = 0.
a(n) = 1 iff n belongs to A072197.
a(n) = 2 iff n belongs to A080675.
a(n) = -1 iff n belongs to A020989.
a(n) = -2 iff n belongs to A136412.

A385706 Numerator of h(n) which is the minimum among the maxima of period n cycles of T(x) = 1 - 2 * |x-1/2|.

Original entry on oeis.org

0, 4, 6, 14, 26, 52, 106, 212, 426, 844, 1706, 1126, 6826, 13516, 27306, 54062, 109226, 216268, 436906, 288326, 1747626, 3460300, 6990506, 307548, 27962026
Offset: 1

Views

Author

Orazio G. Cherubini, Jul 07 2025

Keywords

Comments

The fixed points of T^n are always rational of the form 2k/(2^n+-1) so the number of period n cycles is finite, and h(n) has this form.
A truncated map can be formed T_h(x)=min(h,T(x)) and h(n) is the smallest h for which this map still has a period n cycle (falling between T_0 having only the fixed point 0, and T_1 which is all of T).

Examples

			For n=3: the cycles of period 3 in T are {2/7,4/7,6/7} and {2/9,4/9,8/9} with maxima 6/7 and 8/9. The minimum between those last numbers is 6/7 so a(3)=6.
For n=4: the cycles of period 4 in T are {2/15,4/15,8/15,14/15}, {2/17,4/17,8/17,16/17} and {6/17,12/17,10/17,14/17} with maxima 14/15,16/17,14/17. The minimum between those last numbers is 14/17 so a(4)=14.
		

Crossrefs

Cf. A386237 (denominators), A385708 (binary expansion).

Formula

a(2^n) = 2*A162634(n) for n>1 (empirical observation).
a(2n+1) = A020989(n) for n>1 (empirical observation).

A165752 a(n) = (8-5*4^n)/3.

Original entry on oeis.org

1, -4, -24, -104, -424, -1704, -6824, -27304, -109224, -436904, -1747624, -6990504, -27962024, -111848104, -447392424, -1789569704, -7158278824, -28633115304, -114532461224, -458129844904, -1832519379624, -7330077518504
Offset: 0

Views

Author

Philippe Deléham, Sep 26 2009

Keywords

Programs

  • Mathematica
    (8-5*4^Range[0,30])/3 (* or *) LinearRecurrence[{5,-4},{1,-4},30] (* Harvey P. Dale, Jan 10 2016 *)
  • PARI
    x='x+O('x^99); Vec((1-9*x)/(1-5*x+4*x^2)) \\ Altug Alkan, Apr 07 2016

Formula

a(n) = 4*a(n-1) - 8, a(0)=1.
a(n) = 5*a(n-1) - 4*a(n-2), a(0)=1, a(1)=-4, for n>1.
G.f.: (1-9x)/(1-5x+4x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-5)^(n-k).
a(n) = (-4)*A020989(n-1).
E.g.f.: (1/3)*(8*exp(x) - 5*exp(4*x)). - G. C. Greubel, Apr 07 2016

A316385 Lexicographically earliest sequence of distinct positive terms such that for any n > 0, a(n) AND a(2*n) = a(n) (where AND denotes the binary AND operator).

Original entry on oeis.org

1, 3, 2, 7, 4, 6, 5, 15, 8, 12, 9, 14, 10, 13, 11, 31, 16, 24, 17, 28, 18, 25, 19, 30, 20, 26, 21, 29, 22, 27, 23, 63, 32, 48, 33, 56, 34, 49, 35, 60, 36, 50, 37, 57, 38, 51, 39, 62, 40, 52, 41, 58, 42, 53, 43, 61, 44, 54, 45, 59, 46, 55, 47, 127, 64, 96, 65
Offset: 1

Views

Author

Rémy Sigrist, Jul 01 2018

Keywords

Comments

This sequence is a permutation of the natural numbers (as odd-indexed terms are not constrained); see A316472 for the inverse sequence.
In the binary plot of the sequence, if the pixel (x, y) is on, then the pixel (2*x, y) is on.

Examples

			The first terms, alongside the binary representations of a(n) and of a(2*n), are:
  n  a(n) bin(a(n)) bin(a(2n))
  -- ---- --------- ----------
   1    1         1         11
   2    3        11        111
   3    2        10        110
   4    7       111       1111
   5    4       100       1100
   6    6       110       1110
   7    5       101       1101
   8   15      1111      11111
   9    8      1000      11000
  10   12      1100      11100
		

Crossrefs

Cf. A004755, A004761, A020989, A316472 (inverse).

Programs

  • PARI
    See Links section.

Formula

Empirically:
- a(2*k) = A004755(a(k)) for any k > 0,
- a(2*k - 1) = A004761(k + 1) for any k > 0,
- a(n) = n iff n belongs to A020989.

A090842 Square array of numbers read by antidiagonals where T(n,k) = ((k+3)*(k+2)^n-2)/(k+1).

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 17, 22, 1, 7, 26, 53, 46, 1, 8, 37, 106, 161, 94, 1, 9, 50, 187, 426, 485, 190, 1, 10, 65, 302, 937, 1706, 1457, 382, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 1, 12, 101, 658, 3201, 10886, 23437, 27306, 13121, 1534, 1, 13, 122, 911, 5266
Offset: 0

Views

Author

Paul Barry, Dec 09 2003

Keywords

Comments

Nodes on a tree with degree k interior nodes and degree 1 boundary nodes.

Examples

			Rows begin:
  1 4 10 22 ...
  1 5 17 53 ...
  1 6 26 106 ...
  1 7 37 187 ...
		

Crossrefs

Formula

The total number of nodes on a tree with degree k interior nodes and degree 1 boundary nodes is given by N(k, r) = (k*(k-1)^r-2)/(k-2).
G.f.: Sum_{k>=0} (1+x*y)/(1-x*y)/(1-(k+2)*x*y)*y^k. - Vladeta Jovovic, Dec 12 2003

A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.

Original entry on oeis.org

3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 06 2008

Keywords

Comments

Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function.
Examples:
a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915.
a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489.
a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952.
a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584.
a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655.
a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276.

Examples

			a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
		

Crossrefs

Programs

  • Mathematica
    Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
  • PARI
    a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
    
  • Sage
    [3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008

Extensions

More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020

A366987 Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.

Original entry on oeis.org

-1, 0, 0, -2, -1, -2, 2, 1, -1, -2, -6, -3, -3, -3, -6, 10, 5, 1, -1, -5, -10, -22, -11, -7, -5, -7, -11, -22, 42, 21, 9, 3, -3, -9, -21, -42, -86, -43, -23, -13, -11, -13, -23, -43, -86, 170, 85, 41, 19, 5, -5, -19, -41, -85, -170, -342, -171, -87, -45, -27, -21, -27, -45, -87, -171, -342
Offset: 0

Views

Author

Paul Curtz and Thomas Scheuerle, Oct 31 2023

Keywords

Examples

			Triangle T(n, k) starts:
   -1
    0   0
   -2  -1  -2
    2   1  -1  -2
   -6  -3  -3  -3  -6
   10   5   1  -1  -5 -10
  -22 -11  -7  -5  -7 -11 -22
   42  21   9   3  -3  -9 -21 -42
   ...
Note the symmetrical distribution of the absolute values of the terms in each row.
		

Crossrefs

Rows sums: -A282577(n+2), if the conjectures from Colin Barker in A282577 are true.
First column: -(-1)^n * A078008(n).
Second column: (-1)^n * A001045(n).
Third column: -A140966(n).
Fourth column: (-1)^n * A155980(n+2).

Programs

  • Maple
    T := (n, k) -> -(2^(n-k)*(-1)^n + 2^k + (-1)^k)/3:
    seq(seq(T(n, k), k = 0..n), n = 0..10);  # Peter Luschny, Nov 02 2023
  • Mathematica
    A366987row[n_]:=Table[-(2^(n-k)(-1)^n+2^k+(-1)^k)/3,{k,0,n}];Array[A366987row,15,0] (* Paolo Xausa, Nov 07 2023 *)
  • PARI
    T(n, k) = (-2^(k+1) + 2*(-1)^(k+1) + (-1)^(n+1)*2^(1+n-k))/6 \\ Thomas Scheuerle, Nov 01 2023

Formula

T(n, 0) = -((-2)^n + 2)/3.
T(n, k+1) - T(n, k) = T(n-1, k) + (-1)^k.
T(2*n+1, n) = A001045(n).
T(2*n+1, n+1) = -A001045(n).
T(2*n, n+1) = -A048573(n-1), for n > 0.
Note that the definition of T extends to negative parameters:
T(2*n-2, n-1) = -A001045(n).
-2^n*Sum_{k=0..n} (-1)^k*T(-n, -k) = A059570(n+1).
-4^n*Sum_{k=0..2*n} T(-2*n, -k) = A020989(n).
-Sum_{k=0..n} (-1)^k*T(n, k) = A077898(n). See also A053088.
Sum_{k = 0..2*n} |T(2*n, k)| = (4^(n+1) - 1)/3.
Sum_{k = 0..2*n+1} |T(2*n+1, k)| = (1 + (-1)^n - 2^(2 + n) + 2^(1 + 2*n))/3.
G.f.: (-1 - x + x*y)/((1 - x)*(1 + 2*x)*(1 + x*y)*(1 - 2*x*y)). - Stefano Spezia, Nov 03 2023

Extensions

a(42) corrected by Paolo Xausa, Nov 07 2023

A067763 Square array read by antidiagonals of base n numbers written as 122...222 with k 2's (and a suitable interpretation for n=0, 1 or 2).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 10, 5, 1, 2, 9, 22, 17, 6, 1, 2, 11, 46, 53, 26, 7, 1, 2, 13, 94, 161, 106, 37, 8, 1, 2, 15, 190, 485, 426, 187, 50, 9, 1, 2, 17, 382, 1457, 1706, 937, 302, 65, 10, 1, 2, 19, 766, 4373, 6826, 4687, 1814, 457, 82, 11, 1, 2, 21, 1534, 13121
Offset: 0

Views

Author

Henry Bottomley, Feb 06 2002

Keywords

Comments

Start with a node; step one is to connect that node to n+1 new nodes so that it is of degree n+1; further steps are to connect each existing node of degree 1 to n new nodes so that it is of degree n+1; T(n,k) is the total number of nodes after k steps.

Examples

			Rows start: 1,2,2,2,2,2,...; 1,3,5,7,9,11,...; 1,4,10,22,46,94,...; 1,5,17,53,161,485,... T(3,2) =122 base 3 =17.
		

Crossrefs

Rows include A040000, A005408, A033484, A048473, A020989, A057651, A061801 etc. For negative n (not shown) absolute values of rows would effectively include A000012, A014113, A046717.

Formula

T(n, k) =((n+1)*n^k-2)/(n-1) [with T(1, k)=2k+1] =n*T(n, k-1)+2 =(n+1)*T(n, k-1)-n*T(n, k-2) =T(n, k-1)+(1+1/n)*n^k =A055129(k, n)+A055129(k-1, n). Coefficient of x^k in expansion of (1+x)/((1-x)(1-nx)).
Previous Showing 21-29 of 29 results.