cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A101876 Number of Abelian groups of order 4n.

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 2, 7, 4, 3, 2, 5, 2, 3, 2, 11, 2, 6, 2, 5, 2, 3, 2, 7, 4, 3, 6, 5, 2, 3, 2, 15, 2, 3, 2, 10, 2, 3, 2, 7, 2, 3, 2, 5, 4, 3, 2, 11, 4, 6, 2, 5, 2, 9, 2, 7, 2, 3, 2, 5, 2, 3, 4, 22, 2, 3, 2, 5, 2, 3, 2, 14, 2, 3, 4, 5, 2, 3, 2, 11, 10, 3, 2, 5, 2, 3, 2, 7, 2, 6, 2, 5, 2, 3, 2, 15, 2, 6, 4, 10, 2
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Crossrefs

Bisection of A101872, quadrisection of A000688.

Programs

  • Mathematica
    a[n_] := FiniteAbelianGroupCount[4*n]; Array[a, 100] (* Amiram Eldar, Sep 23 2023*)
  • PARI
    A101876(n) = factorback(apply(e -> numbpart(e),factor(4*n)[,2])); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A000688(4*n). - Antti Karttunen, Sep 27 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (4 - 6 * A048651) * A021002 = 5.20306278505563943501... . - Amiram Eldar, Sep 23 2023

Extensions

More terms from Joshua Zucker, May 10 2006

A104488 Number of Hamiltonian groups of order n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0;
    (* Second program: *)
    a[n_] := If[Mod[n, 8]==0, FiniteAbelianGroupCount[n/2^IntegerExponent[n, 2]], 0]; Array[a, 102] (* Jean-François Alcover, Sep 14 2019 *)
  • PARI
    a(n)={my(e=valuation(n, 2)); if(e<3, 0, my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i])))} \\ Andrew Howroyd, Aug 08 2018

Formula

Let n = 2^e*o, where e = e(n) >= 0 and o = o(n) is an odd number. The number h(n) of Hamiltonian groups of order n is given by h(n) = 0, if e(n) < 3 and h(n) = a(o(n)), otherwise, where a(n) = A000688(n) denotes the number of Abelian groups of order n.
a(8*n) = A000688(A000265(n)), a(n) = 0 for n mod 8 <> 0. - Andrew Howroyd, Aug 08 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Sep 23 2023

A370897 Partial alternating sums of the number of abelian groups sequence (A000688).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, 0, -3, -1, -2, -1, -3, -2, -3, -2, -7, -6, -8, -7, -9, -8, -9, -8, -11, -9, -10, -7, -9, -8, -9, -8, -15, -14, -15, -14, -18, -17, -18, -17, -20, -19, -20, -19, -21, -19, -20, -19, -24, -22, -24, -23, -25, -24, -27, -26, -29, -28, -29, -28
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ (PartitionsP[Last[#]] & /@ FactorInteger[n]); f[1] = 1; Accumulate[Array[(-1)^(#+1) * f[#] &, 100]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * f(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A000688(k).
a(n) = k_1 * A021002 * n + k_2 * A084892 * n^(1/2) + k_3 * A084893 * n^(1/3) + O(n^(1/4 + eps)), where eps > 0 is arbitrarily small, k_j = -1 + 2 * Product_{i>=1} (1 - 1/2^(i/j)), k_1 = 2*A048651 - 1 = -0.422423809826..., k_2 = -0.924973966404..., and k_3 = -0.991478298912... (Tóth, 2017).

A068982 Decimal expansion of the limit of the product of a modified zeta function.

Original entry on oeis.org

4, 3, 5, 7, 5, 7, 0, 7, 6, 7, 7, 2, 6, 4, 5, 5, 9, 3, 7, 3, 7, 6, 2, 2, 9, 7, 0, 1, 2, 0, 9, 4, 1, 8, 6, 3, 4, 9, 6, 8, 6, 4, 1, 7, 4, 9, 2, 4, 3, 6, 8, 0, 3, 8, 1, 7, 5, 4, 6, 0, 9, 8, 9, 0, 9, 2, 3, 0, 0, 2, 3, 6, 0, 1, 6, 1, 0, 3, 0, 5, 3, 1, 8, 8, 0, 4, 3, 9, 7, 9, 5, 9, 7, 7, 2, 3, 4, 0, 6, 5, 3, 7, 6, 9
Offset: 0

Views

Author

Andre Neumann Kauffman (andrekff(AT)hotmail.com), Apr 01 2002

Keywords

Comments

The "modified zeta function" Zetam(n) = sum(mu(k)/k^n) may be helpful when searching for a closed form for Apery's constant.

Examples

			0.43575707...
		

Crossrefs

Programs

  • Maple
    with(numtheory); evalf(Product(Sum('mobius(k)/k^n','k'=1..infinity),n=2..infinity),40); Note: For practical reasons you should change "infinity" to some finite value.
    evalf(product(1/Zeta(n), n=2..infinity), 120); # Vaclav Kotesovec, Oct 22 2014
  • Mathematica
    digits = 104; 1/NProduct[ Zeta[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> 1000] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)

Formula

Equals Product_{k=1..oo} Sum_{n=2..oo} mu(k)/k^n.
Equals 1/A021002. - R. J. Mathar, Jan 31 2009

Extensions

Corrected and extended by R. J. Mathar, Jan 31 2009
Example corrected by R. J. Mathar, Jul 23 2009

A101871 Number of Abelian groups of order 2n+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Crossrefs

Bisection of A000688.

Programs

  • Mathematica
    a[n_] := FiniteAbelianGroupCount[2*n + 1]; Array[a, 100, 0] (* Amiram Eldar, Sep 23 2023 *)

Formula

From Amiram Eldar, Sep 23 2023: (Start)
a(n) = A000688(2*n+1) = A000688(4*n+2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * A048651 * A021002 = 1.32545452721253858057... . (End)

Extensions

More terms from Joshua Zucker, May 10 2006

A104452 Number of groups of order <= n all of whose subgroups are normal.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 18, 19, 20, 21, 27, 28, 30, 31, 33, 34, 35, 36, 40, 42, 43, 46, 48, 49, 50, 51, 59, 60, 61, 62, 66, 67, 68, 69, 73, 74, 75, 76, 78, 80, 81, 82, 88, 90, 92, 93, 95, 96, 99, 100, 104, 105, 106, 107, 109, 110, 111, 113, 125, 126, 127
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfAbelianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[a, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfAllGroupsOfOrderLEQThanN[n_]:=numberOfAbelianGroupsOfOrderLEQThanN[n] +numberOfHamiltonianGroupsOfOrderLEQThanN[n];

Formula

a(n) ~ c * n, where c = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Oct 03 2023

A361179 a(n) = sigma(n)^4.

Original entry on oeis.org

1, 81, 256, 2401, 1296, 20736, 4096, 50625, 28561, 104976, 20736, 614656, 38416, 331776, 331776, 923521, 104976, 2313441, 160000, 3111696, 1048576, 1679616, 331776, 12960000, 923521, 3111696, 2560000, 9834496, 810000, 26873856, 1048576, 15752961, 5308416
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 03 2023

Keywords

Comments

In general, for k>=1, Sum_{m=1..n} sigma(m)^k ~ c(k) * z(k) * n^(k+1) / (k+1), where z(k) = Product_{j=2..k+1} zeta(j).
z(k) tends to A021002 = 2.29485659167331379418351583... if k tends to infinity.
Table of logarithms of the first twenty constants c(k):
log(c1) = 0
log(c2) = 0.4185904294034097177091498674425959208785022862606440306200960821...
log(c3) = 1.0423888168104400391462790418324165821902123159643681963298587386...
log(c4) = 1.7991790110714031081639242851527957388041981665455193670488985855...
log(c5) = 2.6531418047626712704435945717713008165192112256395129469527055461...
log(c6) = 3.5826667694785981489341382260447390026333883927530294731356708082...
log(c7) = 4.5733843557245275039380976990636718508529417039225677910093512418...
log(c8) = 5.6152065176325962438798772352645945078887296036246579568363264836...
log(c9) = 6.7007695219862872061684609152917692899880931107656334442026270254...
log(c10) = 7.8245175718301572361518558972457980392624870372412384620464547480...
log(c11) = 8.9821318589248960303876549202030018215854310738197659104984082438...
log(c12) = 10.170161510396427442300796140752106239603402200741405656518889304...
log(c13) = 11.385778844373902103940190311048453116470874526205115584130363228...
log(c14) = 12.626614423444098003503814842580453502016287945932183786430620101...
log(c15) = 13.890644760144907314506933347339629337810929043024214330654043796...
log(c16) = 15.176115136560648867246990011975416479066956527530401883224856531...
log(c17) = 16.481485806132270823150284520463000397265757050340939883069076823...
log(c18) = 17.805393674783928883671133007206209125657866860089528876021281793...
log(c19) = 19.146624201995507049618714377273936711664382470319966849198205155...
log(c20) = 20.504090088752226662590920186246482636058069128320785639131816842...
c1 = 1, c2 = 5/(2*zeta(2)) = 15/Pi^2.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^4, {n, 1, 50}]
  • PARI
    a(n) = sigma(n)^4;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X)*(1 + 3*p*X + 4*p^2*X + 3*p^3*X + p^4*X^2)/((1 - X)*(1 - p*X)*(1 - p^2*X)*(1 - p^3*X)*(1 - p^4*X)))[n], ", "))

Formula

Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^4.
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) * zeta(s-4) * Product_{primes p} (1 + 1/p^(3*s-6) + 3/p^(2*s-3) + 5/p^(2*s-4) + 3/p^(2*s-5) + 3/p^(s-1) + 5/p^(s-2) + 3/p^(s-3)).
Sum_{k=1..n} a(k) ~ c * Pi^6 * zeta(3) * zeta(5) * n^5 / 2700, where c = Product_{primes p} (1 + 3/p^2 + 5/p^3 + 3/p^4 + 3/p^5 + 5/p^6 + 3/p^7 + 1/p^9) = 6.0446828090651437986928739783339791032197283386377841627594461874871547391...
a(n) = A000583(A000203(n)).

A080730 Decimal expansion of the infinite product of zeta functions for odd arguments >= 3.

Original entry on oeis.org

1, 2, 6, 0, 2, 0, 5, 7, 1, 0, 7, 0, 5, 2, 4, 1, 7, 1, 0, 7, 6, 7, 8, 1, 7, 2, 2, 6, 0, 0, 2, 4, 1, 0, 6, 2, 8, 0, 3, 4, 3, 7, 9, 8, 6, 4, 0, 8, 4, 9, 4, 9, 6, 4, 0, 3, 7, 7, 1, 5, 3, 0, 1, 3, 9, 3, 0, 6, 3, 2, 4, 8, 8, 4, 2, 9, 8, 0, 4, 3, 1, 5, 6, 6, 8, 6, 5, 0, 0, 9, 6, 4, 1, 1, 6, 3, 4, 7, 3, 4, 4, 8, 5, 8, 8
Offset: 1

Views

Author

Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003

Keywords

Examples

			1.2602057107052417107678172260024106280343...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[ Zeta[ 2n + 1], {n, 500}], 10, 110][[1]] (* Robert G. Wilson v, Nov 21 2014 *)
  • PARI
    prodinf(x=1, zeta(2*x+1)) \\ Michel Marcus, Nov 22 2014

Formula

Decimal expansion of zeta(3)*zeta(5)*zeta(7)*...*zeta(2k+1)*...
Equals A021002/A080729. - Amiram Eldar, Jan 31 2024

Extensions

More terms from Benoit Cloitre, Mar 08 2003

A104407 Number of Hamiltonian groups of order <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]];

Formula

a(n) ~ c * n, where c = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Oct 03 2023

A192005 Number of non-cyclic abelian groups of finite order. The order is given by A013929.

Original entry on oeis.org

1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 6, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 10, 1, 5, 1, 1, 4, 4, 1, 2, 1, 1, 6, 1, 1, 3, 2, 5, 4, 1, 1, 2, 1, 1, 2, 1, 14, 1, 2, 2, 1, 9, 1, 1, 1, 2, 1, 1, 6, 4, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 2, 10, 3, 1, 5, 1, 1, 4, 1, 8, 1, 6, 3, 1, 2, 1, 1, 4, 1, 6, 1, 1, 2, 2, 3, 21, 1, 1, 2, 1, 2, 4, 1, 1, 1, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jul 28 2011

Keywords

Comments

Every abelian group of finite order is the direct product of cyclic groups (there may be only one factor). See, e.g., the A. Speiser reference, Satz 43, p. 49, in combination with Satz 42, p. 47, and also Satz 4, p. 17, with the remark on the direct product on page 28.
See the list of abelian groups of small order in the Wikipedia link.

Examples

			n=1: there is one abelian group of order 4=A013929(1), which is not the cyclic group Z_4 (in additive notation), namely the Klein 4-group: Z_2 x Z_2 (also denoted by (Z_2)^2).
n=2: there are 2 non-cyclic abelian groups of order 8=A013929(2), namely Z_2 x Z_4 and (Z_2)^3.
n=3: order 9=A013929(3), (Z_3)^2.
n=4: order 12, Z_3 x (Z_2)^2 (note that Z_6 = Z_3 x Z_2 and Z_12 = Z_4 x Z_3, where = means 'is isomorphic to').
n=5: order 16. The four non-cyclic groups are (Z_2)^4, Z_4 x (Z_2)^2, Z_8 x Z_2 and (Z_4)^2.
		

References

  • Andreas Speiser, Die Theorie der Gruppen von endlicher Ordnung, Vierte Auflage, Birkhäuser, 1956.

Crossrefs

Programs

  • Mathematica
    FiniteAbelianGroupCount /@ Select[Range[300], ! SquareFreeQ[#] &] - 1 (* Amiram Eldar, Oct 01 2023 *)

Formula

a(n) = A000688(A013929(n)) - 1, n>=1.
See the formula for A000688 using the product of the number of partitions of the exponents in the prime number factorization.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2) * c - 1)/(zeta(2) - 1) - 1 = 3.3025914257..., where c = A021002. - Amiram Eldar, Oct 01 2023
Previous Showing 11-20 of 32 results. Next