cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A244285 Decimal expansion of A1*B1, the average number of non-isomorphic semisimple rings of any order, where A1 is Product_{m>1} zeta(m) and B1 is Product_{r*m^2 > 1} zeta(r*m^2).

Original entry on oeis.org

2, 4, 9, 9, 6, 1, 6, 1, 1, 2, 9, 3, 6, 2, 9, 8, 2, 7, 4, 9, 3, 2, 3, 7, 3, 8, 2, 1, 7, 5, 6, 4, 9, 8, 0, 3, 4, 5, 7, 0, 4, 0, 2, 2, 5, 8, 8, 0, 7, 5, 9, 5, 4, 4, 3, 2, 0, 6, 2, 1, 0, 9, 4, 8, 1, 2, 1, 2, 2, 4, 3, 6, 8, 1, 6, 9, 6, 5, 1, 3, 6, 4, 7, 2, 6, 8, 8, 6, 3, 3, 6, 4, 3, 0, 9, 7, 5, 3, 6, 2, 8, 7, 2, 2, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 25 2014

Keywords

Comments

The asymptotic mean of A038538. - Amiram Eldar, Jan 31 2024

Examples

			2.499616112936298274932373821756498034570402258807595443206210948121224368...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.

Crossrefs

Cf. A021002 (A1), A038538, A123030.

Programs

  • Maple
    Digits := 200: z:=product(Zeta(1.0*j), j = 2..1000): for k from 10 by 10 to 50 do print(z*product(product(Zeta(1.0*r*m^2), r = 1..k^2), m = 2..k)); end do; # Vaclav Kotesovec, Jun 11 2020
  • Mathematica
    digits = 20; digitsPlus = 100; n0 = 50; dn = 1; A1 = NProduct[Zeta[m], {m, 2, Infinity}, WorkingPrecision -> digitsPlus]; Clear[B1]; B1[n_] := B1[n] = NProduct[Zeta[r*m^2], {r, 1, n}, {m, 2, n}, WorkingPrecision -> digitsPlus]; B1[n0]; B1[n = n0 + dn]; While[ RealDigits[B1[n], 10, digitsPlus] != RealDigits[B1[n - dn], 10, digitsPlus], Print["n = ", n]; n = n + dn]; RealDigits[A1*B1[n], 10, digits] // First
  • PARI
    prodinf(m = 2, zeta(m)) * prodinf(r = 1, prodinf(m = 2, zeta(r*m^2))) \\ Amiram Eldar, Jan 31 2024

Extensions

More digits from Vaclav Kotesovec, Jun 11 2020

A082868 Continued fraction approximation to Product_{k>=2} zeta(k).

Original entry on oeis.org

2, 3, 2, 1, 1, 4, 10, 1, 1, 2, 5, 1, 1, 3, 10, 3, 2, 11, 1, 2, 3, 6, 2, 1, 3, 9, 2, 1, 2, 7, 1, 1, 2, 26, 1, 21, 13, 1, 1, 1, 42, 2, 1, 2, 1, 4, 2, 1, 9, 18, 2, 2, 1, 1, 45, 2, 1, 1, 36, 4, 1, 5, 14, 2, 6, 2, 4, 1, 5, 3, 2, 3, 1, 4, 1, 2, 2, 13, 1, 3, 48, 23, 1, 1, 1, 7, 6, 1, 8, 1, 1, 4, 3, 3, 5, 2, 7, 2
Offset: 0

Views

Author

Wouter Meeussen, May 24 2003

Keywords

Comments

Continued fraction of the constant A021002. - R. J. Mathar, Aug 05 2014

Crossrefs

Cf. A021002.

Programs

  • Mathematica
    ContinuedFraction@NProduct[Zeta[n], {n, 2, Infinity}, WorkingPrecision->200, AccuracyGoal->200, Method->SequenceLimit, NProductFactors->200, NProductExtraFactors->200]

A169862 Decimal expansion of root of x^(x-1) = (x-1)^x.

Original entry on oeis.org

3, 2, 9, 3, 1, 6, 6, 2, 8, 7, 4, 1, 1, 8, 6, 1, 0, 3, 1, 5, 0, 8, 0, 2, 8, 2, 9, 1, 2, 5, 0, 8, 0, 5, 8, 6, 4, 3, 7, 2, 2, 5, 7, 2, 9, 0, 3, 2, 7, 1, 2, 1, 2, 4, 8, 5, 3, 7, 7, 1, 0, 3, 9, 6, 1, 6, 8, 5, 0, 6, 4, 8, 8, 0, 0, 9, 1, 5, 7, 7, 4, 3, 6, 2, 9, 0, 4, 2, 0, 1, 3, 8, 0, 4, 8, 2, 8, 2, 5, 6, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2010, based on a suggestion from Daniel Forgues

Keywords

Examples

			3.2931662874118610315080282912508058643722572903271212485377103961...
		

Crossrefs

Equals A085846 + 1. Cf. A021002.

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^(x-1)==(x-1)^x,{x,3}, WorkingPrecision->150]] [[1]] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    solve(x=3,4,x^(x-1)-(x-1)^x) \\ Charles R Greathouse IV, Apr 14 2014

A369634 Decimal expansion of the infinite product of the Zeta Functions with arguments that are multiples of 3.

Original entry on oeis.org

1, 2, 2, 5, 7, 0, 4, 7, 0, 5, 1, 2, 8, 4, 9, 7, 4, 0, 9, 5, 2, 0, 4, 5, 7, 6, 7, 1, 5, 8, 8, 9, 7, 4, 4, 8, 2, 4, 8, 9, 9, 3, 3, 8, 4, 2, 2, 3, 2, 2, 4, 5, 5, 9, 6, 6, 7, 6, 2, 6, 9, 2, 8, 7, 0, 1, 1, 9, 1, 8, 0, 9, 1, 8, 3, 7, 3, 5, 5, 4, 9, 5, 3, 0, 7, 6, 9, 9, 5, 6, 1, 0, 4, 2, 7, 1, 3, 1, 4, 9, 7, 3, 6, 7, 8
Offset: 1

Views

Author

R. J. Mathar, Jan 28 2024

Keywords

Comments

Dirichlet generating function of A000688 evaluated at s=3.

Examples

			1.22570470512849740952045767158897448248993384223224...
		

Crossrefs

Programs

  • Maple
    evalf(product(Zeta(3*k), k = 1 .. infinity), 120) # Amiram Eldar, Jan 28 2024
  • PARI
    prodinf(k=1,zeta(3*k)) \\ Amiram Eldar, Jan 28 2024

Formula

Equals Product_{k>=1} zeta(3*k) = A002117 * A013664 * A013667 * A013670 *...

A249141 Decimal expansion of 'sigma', a constant associated with the expected number of random elements to generate a finite abelian group.

Original entry on oeis.org

2, 1, 1, 8, 4, 5, 6, 5, 6, 3, 4, 7, 0, 1, 6, 3, 5, 3, 2, 3, 8, 2, 5, 2, 7, 7, 6, 9, 1, 0, 2, 3, 6, 4, 7, 6, 4, 2, 8, 8, 5, 9, 0, 7, 8, 5, 6, 1, 8, 5, 1, 7, 9, 1, 5, 4, 1, 4, 2, 6, 3, 8, 5, 2, 9, 0, 9, 8, 3, 4, 1, 1, 2, 3, 6, 5, 3, 4, 6, 3, 4, 5, 7, 7, 5, 5, 7, 0, 8, 2, 5, 9, 7, 8, 1, 8, 7, 6, 7, 9, 3, 9
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2014

Keywords

Examples

			2.11845656347016353238252776910236476428859...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.

Crossrefs

Programs

  • Mathematica
    digits = 102; jmax = 400; P[j_] := 1/Product[N[Zeta[k], digits+100], {k, j, jmax}]; sigma = 1+Sum[1 - P[j], {j, 2, jmax}]; RealDigits[sigma, 10, digits] // First
  • PARI
    default(realprecision,120); 1 + suminf(j=2, 1 - prodinf(k=j, 1/zeta(k))) \\ Michel Marcus, Oct 22 2014

Formula

sigma = 1+sum_{j >= 2} (1-prod_{k >= j} zeta(k)^(-1)).

A328705 Dirichlet g.f.: Product_{k>=1} zeta(k*s)^2.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 10, 5, 4, 2, 10, 2, 4, 4, 20, 2, 10, 2, 10, 4, 4, 2, 20, 5, 4, 10, 10, 2, 8, 2, 36, 4, 4, 4, 25, 2, 4, 4, 20, 2, 8, 2, 10, 10, 4, 2, 40, 5, 10, 4, 10, 2, 20, 4, 20, 4, 4, 2, 20, 2, 4, 10, 65, 4, 8, 2, 10, 4, 8, 2, 50, 2, 4, 10, 10, 4, 8, 2, 40
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Dirichlet convolution of A000688 with itself.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, FiniteAbelianGroupCount[n/#] FiniteAbelianGroupCount[#] &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n} A000688(n/d) * A000688(d).
Sum_{k=1..n} a(k) ~ c^2 * n * (log(n) + 2*gamma - 1 - 2*s), where c = A021002 = Product_{k>=2} zeta(k) = 2.2948565916733137941835158313443112887131637994..., s = Sum_{k>=2} k*zeta'(k)/zeta(k) = -2.1955691982567064617939038695473479681910375... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 26 2019
Multiplicative with a(p^e) = A000712(e). - Amiram Eldar, Nov 30 2020

A335494 Decimal expansion of s, where s is the root of Product_{k>=1} zeta(k*s) = 2.

Original entry on oeis.org

1, 8, 8, 6, 8, 6, 9, 1, 4, 9, 8, 7, 7, 7, 0, 2, 8, 1, 8, 4, 7, 2, 1, 1, 6, 0, 4, 0, 5, 7, 5, 0, 8, 2, 9, 8, 5, 4, 8, 1, 7, 3, 6, 8, 9, 3, 5, 5, 4, 3, 7, 3, 0, 8, 2, 1, 6, 3, 3, 7, 5, 6, 6, 7, 1, 7, 6, 6, 4, 5, 9, 5, 5, 9, 6, 4, 7, 0, 8, 6, 5, 6, 4, 4, 7, 4, 6, 3, 0, 8, 4, 7, 9, 9, 1, 5, 6, 3, 6, 5, 2, 5, 6, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 11 2020

Keywords

Examples

			1.8868691498777028184721160405750829854817368935543730821633756671766...
		

Crossrefs

A338851 Constant T such that Sum_{n>=1} zeta(T*n)=1.

Original entry on oeis.org

1, 8, 2, 0, 2, 4, 7, 7, 1, 7, 8, 7, 0, 0, 0, 9, 1, 3, 0, 6, 6, 0, 8, 8, 0, 8, 4, 5, 1, 8, 9, 9, 9, 3, 4, 8, 3, 6, 0, 0, 9, 6, 2, 3, 5, 9, 5, 2, 9, 3, 6, 4, 4, 9, 8, 7, 6, 8, 3, 5, 4, 3, 9, 6, 4, 4, 9, 8, 7, 0, 1, 7, 7, 3, 7, 9, 7, 4, 4, 7, 6, 4, 0, 1, 2, 0, 9, 1, 3, 2, 0, 7, 3, 2, 1, 5, 9, 3, 2, 6, 0, 9, 5, 0, 2
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2020

Keywords

Examples

			1.82024771787000913066...
		

Crossrefs

Programs

  • Mathematica
    (*convergence test*)
    Do[Print[FindRoot[Sum[Zeta[c n] - 1, {n, 1, m}] == 1, {c, 2},
       WorkingPrecision -> 200]], {m, 50, 450, 50}] (* Krzysztof Maslanka *)

A375887 Decimal expansion of Product_{n>=2} zeta(n)^n.

Original entry on oeis.org

9, 7, 6, 6, 8, 2, 5, 8, 2, 1, 4, 5, 3, 2, 8, 9, 6, 9, 9, 2, 3, 0, 6, 8, 2, 6, 9, 5, 6, 4, 0, 7, 9, 2, 1, 6, 2, 0, 2, 8, 9, 8, 7, 9, 5, 0, 9, 6, 7, 2, 8, 0, 9, 2, 8, 4, 8, 8, 8, 3, 3, 0, 5, 1, 4, 0, 0, 2, 2, 7, 0, 8, 9, 8, 0, 3, 6, 0, 4, 4, 8, 7, 1, 3, 8, 6, 8, 0, 9, 7, 3, 8, 3, 4, 9, 2, 6, 2, 5, 6, 5, 5, 0, 2, 5, 7, 9, 3, 0, 8, 4, 9, 0, 2, 8, 7, 8, 3, 9, 6, 9, 3, 2, 2, 2, 9, 6, 4, 7, 3
Offset: 1

Views

Author

Richard R. Forberg, Sep 01 2024

Keywords

Comments

It is interesting to note that this product is very close in value to 3 * Sum_{n>=2} (zeta(n)^n-1), A375920, where that factor's first 30 digits are: 3.00012312615292744064909403341.

Examples

			9.766825821453289699230682695640792162028987950967280928488833051400227...
		

Crossrefs

Cf. A375920,(Sum_{n>=2} (zeta(n)^n-1)), A021002 (Product_{n>=2} zeta(n)), A093720 (Sum_{n >= 2} zeta(n)/n!), A013661 (zeta(2)).

Programs

  • Maple
    evalf(Product(Zeta(n)^n, n = 2 .. infinity), 150); # Vaclav Kotesovec, Sep 02 2024
  • Mathematica
    RealDigits[N[Product[Zeta[n]^n, {n, 2, 500}], 150]][[1]]
  • PARI
    prodinf(k = 2, zeta(k)^k) \\ Amiram Eldar, Sep 02 2024

A375920 Decimal expansion of Sum_{n>=2} (zeta(n)^n - 1).

Original entry on oeis.org

3, 2, 5, 5, 4, 7, 4, 9, 9, 5, 7, 8, 0, 3, 6, 9, 2, 6, 2, 0, 9, 4, 3, 6, 8, 6, 6, 5, 0, 6, 9, 0, 1, 5, 1, 3, 8, 0, 7, 5, 2, 8, 2, 6, 4, 3, 8, 0, 3, 3, 9, 7, 5, 8, 5, 3, 4, 1, 8, 5, 9, 2, 7, 2, 2, 6, 5, 7, 2, 0, 2, 5, 8, 8, 1, 5, 9, 5, 6, 1, 3, 8, 4, 6, 8, 6, 2, 3, 8, 2, 9, 5, 0, 2, 9, 3, 8, 0, 0, 3
Offset: 1

Views

Author

Richard R. Forberg, Sep 02 2024

Keywords

Comments

It is interesting to note that this sum is very close in value to 1/3 of Product_{n>=2} zeta(n)^n, A375887, where that factor's first 30 digits are: 0.333319653211135001436063576617.

Examples

			3.255474995780369262094368665069015138075282643803397585341859272265720258...
		

Crossrefs

Cf. A375887 (Product_{n>=2} zeta(n)^n), A021002 (Product_{n>2} zeta(n)), A093720 (Sum_{n>=2} zeta(n)/n!), A013661 (zeta(2)).

Programs

  • Maple
    evalf(Sum(Zeta(n)^n - 1, n = 2 .. infinity), 120); # Vaclav Kotesovec, Sep 02 2024
  • Mathematica
    RealDigits[N[Sum[Zeta[n]^n - 1, {n, 2, 1000}], 150]][[1]]
Previous Showing 21-30 of 32 results. Next