cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A273714 Number of doublerises in all bargraphs having semiperimeter n (n>=2). A doublerise in a bargraph is any pair of adjacent up steps.

Original entry on oeis.org

0, 1, 4, 14, 47, 155, 508, 1662, 5438, 17809, 58395, 191732, 630373, 2075221, 6840140, 22571800, 74564874, 246568051, 816099650, 2703492238, 8963064935, 29738123605, 98735734915, 328034119098, 1090509180192, 3627343273885, 12072071392105, 40197107361740, 133910579452363
Offset: 2

Views

Author

Emeric Deutsch, May 28 2016

Keywords

Comments

a(n) appears to be the number of 021-avoiding ascent sequences (A022493) with exactly one repeated nonzero entry, where repeated means two consecutive equal entries. For example, a(4) = 4 counts 0011, 0110, 0112, 0122, and a(5) = 14 counts 00011, 00110, 00112, 00122, 01011, 01022, 01100, 0110 1, 01102, 01120, 01123, 0122 0, 01223, 01233. - David Callan, Nov 21 2021

Examples

			a(4) = 4 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0, 0, 1, 1, 2 doublerises.
		

Crossrefs

Programs

  • Maple
    g := ((1-2*z-z^2-sqrt(1-4*z+2*z^2+z^4))*(1/2))/sqrt(1-4*z+2*z^2+z^4): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 2 .. 35);
  • Mathematica
    F[k_] := DifferenceRoot[Function[{y, n}, {(2 + n) y[n] + (6 + 2 n) y[2 + n] + (-14 - 4 n) y[3 + n] + (4 + n) y[4 + n] == 0, y[0] == 1, y[1] == 2, y[2] == 5, y[3] == 14}]][k]; Table[1/2 (-F[n] - 2 F[n + 1] + F[n + 2]), {n, 0, 20}] (* Benedict W. J. Irwin, May 29 2016 *)

Formula

G.f.: g = (1 - 2z - z^2 - Q)/(2Q), where Q = sqrt(1 - 4z + 2z^2 + z^4).
a(n) = Sum_{k>0} k*A273713(n,k).
From Benedict W. J. Irwin, May 29 2016: (Start)
Let y(0)=1, y(1)=2, y(2)=5, y(3)=14,
Let (n+2)*y(n) + (2*n+6)*y(n+2) - (4*n+14)*y(n+3) + (n+4)*y(n+4)=0,
a(n) = (y(n+2)-2*y(n+1)-y(n))/2.
(End)
D-finite with recurrence n*a(n) +6*(-n+1)*a(n-1) +9*(n-2)*a(n-2) -6*a(n-3) +(-n+8) * a(n-4) +2*(-n+4)*a(n-5) +(-n+6)*a(n-6)=0. - R. J. Mathar, Jun 06 2016

A035378 Coefficients in expansion of Sum_{k>=0} Product_{j=1..k} (1-x^j) about x = -1.

Original entry on oeis.org

3, 11, 72, 635, 7085, 95911, 1528541, 28044762, 582314535, 13500314080, 345696545788, 9690223054222, 295132850278639, 9705001713289680, 342693270841135600, 12932930349605422101, 519485442041267214922
Offset: 0

Views

Author

Bill Gosper, Aug 19 2001

Keywords

Crossrefs

Cf. A022493.

Programs

  • PARI
    a(n)=polcoeff(sum(i=0,2*n+1,prod(j=1,i,1-(x-1)^j,1+x*O(x^n))),n)

Formula

a(n) ~ sqrt(12) * exp(Pi^2/48) * 24^(n+1) * n^(n+1) / (exp(n) * Pi^(2*n+2)). - Vaclav Kotesovec, May 04 2014
Conjectures: a(5*n+3) == 0 (mod 5), a(5*n+4) == 0 (mod 5) and a(5*n+2) - 2*a(5*n+1) == (0 mod 5) (all checked up to n = 49). - Peter Bala, Jun 19 2023

Extensions

More terms from Vladeta Jovovic, Aug 20 2001

A189359 Number of homogeneous games for n players.

Original entry on oeis.org

0, 1, 3, 8, 23, 76, 293, 1307, 6642, 37882
Offset: 0

Views

Author

Fabián Riquelme, Apr 20 2011

Keywords

Crossrefs

Subclass of A000617. Cf. A001532, A022493, A109456, A132183.

Formula

Conjecture: g.f.: Q(0)*x/(1-x), where Q(k) = 1 + (1-(1-x)^(2*k+2))/(1- (1-(1-x)^(2*k+3))/(1-(1-x)^(2*k+3) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
Note that a(n) - a(n-1) = A022493(n) for 1 <= n <= 9. Does this equality hold for n > 9? If so, then we have the g.f. 1/(1 - x)*( Sum_{n >= 1} Product_{k = 1..n} (1 - (1 - x)^k) ). - Peter Bala, Dec 13 2021

A193387 Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of n-element unlabeled interval posets of height k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 26, 10, 1, 1, 31, 100, 69, 15, 1, 1, 63, 366, 412, 150, 21, 1, 1, 127, 1317, 2305, 1270, 286, 28, 1, 1, 255, 4743, 12551, 9920, 3236, 497, 36, 1, 1, 511, 17275, 67933, 74525, 33301, 7210, 806, 45, 1, 1, 1023, 64029, 370168, 551232, 325860, 93926, 14540, 1239, 55, 1, 1, 2047, 242371, 2046980, 4072130, 3109628, 1151416, 232891, 27147, 1825, 66, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 26 2011

Keywords

Examples

			Triangle begins
1
1 1
1 3 1
1 7 6 1
1 15 26 10 1
1 31 100 69 15 1
1 63 366 412 150 21 1
1 127 1317 2305 1270 286 28 1
1 255 4743 12551 9920 3236 497 36 1
1 511 17275 67933 74525 33301 7210 806 45 1
...
		

Crossrefs

Row sums give A022493. Cf. A193357.

A193548 Decimal expansion of exp(Pi^2/12).

Original entry on oeis.org

2, 2, 7, 6, 1, 0, 8, 1, 5, 1, 6, 2, 5, 7, 3, 4, 0, 9, 4, 7, 9, 1, 0, 6, 1, 4, 1, 2, 0, 3, 1, 4, 9, 7, 4, 4, 6, 6, 9, 7, 9, 7, 4, 2, 6, 0, 3, 0, 0, 2, 3, 7, 7, 5, 6, 1, 5, 5, 1, 6, 1, 7, 0, 9, 8, 2, 7, 5, 0, 6, 3, 7, 2, 8, 6, 3, 0, 1, 4, 3, 1, 8, 6, 6, 8, 4, 6, 5, 7
Offset: 1

Views

Author

John M. Campbell, Jul 30 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Product[Product[k^((1/(n+1))*(-1)^(k)*Binomial[n,k-1]*HarmonicNumber[n]),{k,1,n+1}],{n,1,Infinity}]
    RealDigits[E^(Pi^2/12), 10, 100]
  • PARI
    exp(Pi^2/12) \\ Charles R Greathouse IV, Jul 30 2011

Formula

exp(Pi^2/12) = Product_{n>=1} Product_{k=1..n+1} k^(1/(n+1)) * H(n) * (-1)^k * binomial(n, k-1) where H(n) is the n-th harmonic number.
exp(Pi^2/12) = lim_{n -> infinity} Product_{k=1..n} (1 + k/n)^(1/k). - Peter Bala, Feb 14 2015

A289317 The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row and each column contains a nonzero entry.

Original entry on oeis.org

1, 1, 1, 3, 7, 23, 84, 364, 1792, 9953, 61455, 417720, 3098515, 24902930, 215538825, 1998518430, 19761943208, 207571259703, 2307812703419, 27075591512866, 334263981931669
Offset: 0

Views

Author

Peter Bala, Jul 25 2017

Keywords

Comments

A Fishburn matrix of size n is defined to be an upper-triangular matrix with nonnegative integer entries which sum to n and each row and each column contains a nonzero entry. See A022493. Here we are considering Fishburn matrices where the nonzero entries are all odd.
The g.f. for primitive Fishburn matrices (i.e., Fishburn matrices with entries restricted to the set {0,1}), is F(x) = Sum_{n>=0} Product_{k=1..n} ( 1 - 1/(1 + x)^k ). See A138265. Let C(x) = x/(1 - x^2) = x + x^3 + x^5 + x^7 + .... Then applying Lemma 2.2.22 of Goulden and Jackson gives the g.f. for this sequence as the composition F(C(x)).

Examples

			a(4) = 7: The Fishburn matrices of size 4 with odd nonzero entries are
/3 0\ /1 0\
\0 1/ \0 3/
/1 1 0\ /1 0 1\ /1 0 0\
|0 1 0| |0 1 0| |0 1 1|
\0 0 1/ \0 0 1/ \0 0 1/
/1 1 0\
|0 0 1|
\0 0 1/
/1 0 0 0\
|0 1 0 0|
|0 0 1 0|
\0 0 0 1/
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.

Crossrefs

Programs

  • Maple
    C:= x -> x/(1 - x^2):
    G:= add(mul( 1 - 1/(1 + C(x))^k, k=1..n), n=0..20):
    S:= series(G,x,21):
    seq(coeff(S,x,j),j=0..20);

Formula

G.f.: A(x) = Sum_{n >= 0} Product_{k = 1..n} ( 1 - 1/(1 + x/(1 - x^2))^k ).
a(n) ~ 2^(n + 5/2) * 3^(n + 3/2) * n^(n+1) / (exp(n + Pi^2/12) * Pi^(2*n + 2)). - Vaclav Kotesovec, Aug 31 2023

A294219 Number T(n,k) of ascent sequences of length n where the maximum of 0 and all letter multiplicities equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 4, 1, 0, 1, 26, 20, 5, 1, 0, 1, 82, 97, 30, 6, 1, 0, 1, 276, 496, 191, 42, 7, 1, 0, 1, 1014, 2686, 1259, 310, 56, 8, 1, 0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1, 0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 25 2017

Keywords

Examples

			T(4,1) = 1: 0123.
T(4,2) = 9: 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.
T(4,3) = 4: 0001, 0010, 0100, 0111.
T(4,4) = 1: 0000.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,     1;
  0, 1,     3,     1;
  0, 1,     9,     4,     1;
  0, 1,    26,    20,     5,     1;
  0, 1,    82,    97,    30,     6,    1;
  0, 1,   276,   496,   191,    42,    7,   1;
  0, 1,  1014,  2686,  1259,   310,   56,   8,  1;
  0, 1,  4006, 15481,  8784,  2416,  470,  72,  9,  1;
  0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A057427.
Row sums give A022493.
Cf. A294220.

Programs

  • Maple
    b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,
          add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+
              `if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))
        end:
    A:= (n, k)-> b(n, 0$3, k):
    T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[If[ Coefficient[p, x, j] == k, 0, b[n - 1, j, t + If[j > i, 1, 0], p + x^j, k]], {j, t + 1}]];
    A[n_, k_] :=  b[n, 0, 0, 0, k];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)

Formula

T(n,k) = A294220(n,k) - A294220(n,k-1) for k>0, T(n,0) = A294220(n,k) = A000007(n).

A294281 Number of ascent sequences of length n with alternating ascents and descents (unaffected by level steps).

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 59, 172, 547, 1886, 7047, 28360, 122675, 567210, 2796999, 14641044, 81191947, 475148678, 2929442263, 18965690560, 128754649699, 914056305794, 6777666961735, 52367331911180, 421188392986843, 3519168714308702, 30519733808467031
Offset: 0

Views

Author

Alois P. Heinz, Oct 26 2017

Keywords

Examples

			a(3) = 4: 000, 001, 010, 011.
a(4) = 9: 0000, 0001, 0010, 0011, 0100, 0101, 0102, 0110, 0111.
a(5) = 22: 00000, 00001, 00010, 00011, 00100, 00101, 00102, 00110, 00111, 01000, 01001, 01002, 01010, 01011, 01020, 01021, 01022, 01100, 01101, 01102, 01110, 01111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, u) option remember; `if`(n<1, 1, add(
           b(n-1, j, t+`if`(j>i, 1, 0), `if`(i=j, u, 1-u)),
           j=`if`(u=0, i..t+1, 0..i)))
        end:
    a:= n-> b(n-1, 0$3):
    seq(a(n), n=0..30);

Formula

a(n) = Sum_{j=0..n} binomial(n-1,j) * A099960(n-j).

A317784 Number of ascent sequences of length n avoiding the pattern 0000.

Original entry on oeis.org

1, 1, 2, 5, 14, 47, 180, 773, 3701, 19488, 111890, 695786, 4656185, 33356828, 254675642, 2063984616, 17694054723, 159958176316, 1520689121858, 15165205111010
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2018

Keywords

Crossrefs

Column k=3 of A294220.
Cf. A022493.

Programs

  • Maple
    b:= proc(n, i, t, p) option remember; `if`(n=0, 1, add(
          `if`(coeff(p, x, j)=3, 0, b(n-1, j, t+
          `if`(j>i, 1, 0), p+x^j)), j=1..t+1))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..12);
  • Mathematica
    b[n_,i_,t_,p_,k_]:=b[n,i,t,p,k]=If[n==0,1,Sum[If[Coefficient[p,x,j]==k,0,b[n-1,j,t+If[j>i,1,0],p+x^j,k]],{j,1,t+1}]]; a[n_]:=b[n,0,0,0,Min[n,3]];
    Table[Print["a(",n,") = ",a[n]];a[n],{n, 0, 15}] (* Vincenzo Librandi, Feb 12 2020 *)

Formula

a(n) <= A022493(n) with equality only for n < 4.

Extensions

a(18) from Vaclav Kotesovec, Aug 20 2018
a(19) from Vaclav Kotesovec, Aug 23 2018

A336071 Number of inversion sequences avoiding the vincular pattern 1-01 (or 1-10).

Original entry on oeis.org

1, 2, 6, 23, 107, 584, 3655, 25790, 202495, 1750763
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

Previous Showing 31-40 of 43 results. Next