cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-59 of 59 results.

A071011 Numbers n such that n is a sum of 2 squares (i.e., n is in A001481(k)) and sigma(n) == 0 (mod 4).

Original entry on oeis.org

65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905
Offset: 1

Views

Author

Benoit Cloitre, May 19 2002

Keywords

Comments

It is conjectured that if m is not a sum of 2 squares (i.e., m is in A022544(k)) sigma(m) == 0 (mod 4).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], And[SquaresR[2, #] > 0, Divisible[DivisorSigma[1, #], 4]] &] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    for(n=1,1000,if(1-sign(sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))))+sigma(n)%4==0,print1(n,",")))
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A071011_gen(): # generator of terms
        return filter(lambda n:(lambda f:all(p & 3 != 3 or e & 1 == 0 for p, e in f) and prod((p**(e+1)-1)//(p-1) & 3 for p, e in f) & 3 == 0)(factorint(n).items()),count(0))
    A071011_list = list(islice(A071011_gen(),30)) # Chai Wah Wu, Jun 27 2022

A124981 Odd numbers that are not the sum of 2 squares.

Original entry on oeis.org

3, 7, 11, 15, 19, 21, 23, 27, 31, 33, 35, 39, 43, 47, 51, 55, 57, 59, 63, 67, 69, 71, 75, 77, 79, 83, 87, 91, 93, 95, 99, 103, 105, 107, 111, 115, 119, 123, 127, 129, 131, 133, 135, 139, 141, 143, 147, 151, 155, 159, 161, 163, 165, 167, 171, 175, 177, 179, 183, 187
Offset: 1

Views

Author

Artur Jasinski, Nov 15 2006

Keywords

Examples

			13 is not in the list because it can be written as 3^2+2^2.
		

Crossrefs

Programs

  • Mathematica
    Select[2 * Range[0, 100] + 1, SquaresR[2, #] == 0 &] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isA022544(n)={ local(cnt=0,y2) ; for(x=0,floor(sqrt(n)), y2=n-x^2 ; if( y2>=x^2 && issquare(y2), return(0) ; ) ; ) ; return(1) ; } isA124981(n)={ return( (n%2) && isA022544(n)) ; } { for(n=1,200, if( isA124981(n), print1(n,", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 29 2006

Formula

Equals A022544 INTERSECT A005408. - R. J. Mathar, Nov 29 2006

Extensions

Corrected and extended by R. J. Mathar, Nov 29 2006

A173256 Partial sums of A001481.

Original entry on oeis.org

0, 1, 3, 7, 12, 20, 29, 39, 52, 68, 85, 103, 123, 148, 174, 203, 235, 269, 305, 342, 382, 423, 468, 517, 567, 619, 672, 730, 791, 855, 920, 988, 1060, 1133, 1207, 1287, 1368, 1450, 1535, 1624, 1714, 1811, 1909, 2009, 2110, 2214, 2320, 2429, 2542, 2658, 2775
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2010

Keywords

Comments

The subsequence of primes in this sequence begins 3, 7, 29, 103, 269, 619, 1811, 3271.

Examples

			a(66) = 0 + 1 + 2 + 4 + 5 + 8 + 9 + 10 + 13 + 16 + 17 + 18 + 20 + 25 + 26 + 29 + 32 + 34 + 36 + 37 + 40 + 41 + 45 + 49 + 50 + 52 + 53 + 58 + 61 + 64 + 65 + 68 + 72 + 73 + 74 + 80 + 81 + 82 + 85 + 89 + 90 + 97 + 98 + 100 + 101 + 104 + 106 + 109 + 113 + 116 + 117 + 121 + 122 + 125 + 128 + 130 + 136 + 137 + 144 + 145 + 146 + 148 + 149 + 153 + 157 + 160 = 4876.
		

Crossrefs

Programs

  • Maple
    N:= 1000:
    A001481:= sort(convert({seq(seq(x^2+y^2, y=0..floor(sqrt(N-x^2))),x=0..floor(sqrt(N)))},list)):
    ListTools:-PartialSums(A001481); # Robert Israel, Mar 15 2016
  • Python
    from itertools import count, accumulate, islice
    from sympy import factorint
    def A173256_gen(): # generator of terms
        return accumulate(filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0)))
    A173256_list = list(islice(A173256_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

a(n) = Sum_{i=1..n} A001481(i) = Sum_{i=1..n} (numbers that are the sum of 2 nonnegative squares) = Sum_{i=1..n} (numbers n such that i = x^2 + y^2 has a solution in nonnegative integers x, y).

Extensions

a(21) corrected by Robert Israel, Mar 15 2016

A294716 Numbers that are the sum of 2 squares in exactly 5 ways.

Original entry on oeis.org

4225, 7225, 8125, 8450, 10625, 14450, 16250, 16900, 18125, 21025, 21250, 23125, 25625, 28900, 32500, 33125, 33800, 34225, 36250, 38025, 38125, 42025, 42050, 42500, 45625, 46250, 48841, 51250, 55625, 57800, 60625, 63125, 65000, 65025, 66250, 67600, 68125
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], Length[PowersRepresentations[#, 2, 2]] == 5 &]

Extensions

Updated Mathematica program to Version 11. by Robert Price, Nov 01 2019

A357018 Records in the number of consecutive integers not expressible as sums of 2 squares.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 10, 14, 18, 19, 20, 23, 24, 27, 28, 30, 33, 34, 35, 36, 47, 48, 49, 52, 55, 59, 60, 62, 63, 65, 67, 70, 71, 73, 79, 80, 81, 86, 87, 104, 106
Offset: 1

Views

Author

Hugo Pfoertner, Sep 09 2022

Keywords

Examples

			  n  A297350(n) a(n)  Terms in A022544
  1     0        0    {}
  2     2        1    {3}
  3     5        2    {6, 7}
  4    20        4    {21, 22, 23, 24}
  5    74        5    {75, 76, 77, 78, 79}
  6    90        6    { 91, ...,  96}
  7   185        7    {186, ..., 192}
  8   377        8    {378, ..., 385}
  9   986       10    {987, ..., 996}
		

Crossrefs

A358311 Lucas numbers that are not the sum of two squares.

Original entry on oeis.org

3, 7, 11, 47, 76, 123, 199, 322, 843, 1364, 2207, 3571, 5778, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 4870847, 7881196, 12752043, 20633239, 33385282, 87403803, 141422324, 228826127, 370248451, 599074578, 1568397607, 2537720636
Offset: 1

Views

Author

Chai Wah Wu, Jan 10 2023

Keywords

Comments

Lucas numbers with indices 2, 4, 5 mod 6 are 3 mod 4, so these are all terms. - Charles R Greathouse IV, Jan 11 2023

Crossrefs

Intersection of A000032 and A022544.
Cf. A356809.

Programs

  • Maple
    R:= NULL: count:= 0:
    a:= 2: b:= 1:
    for i from 1 while count < 100 do
      a, b:= b,a+b;
        if ormap(t -> t[2]::odd and t[1] mod 4 = 3, ifactors(b)[2]) then
         R:= R, b; count:= count+1
      fi
    od:
    R; # Robert Israel, Jan 10 2023
  • Python
    from sympy import factorint
    from itertools import islice
    def A358311_gen(): # generator of terms
        a, b = 2,1
        while True:
            if any(e&1 and p&3==3 for p, e in factorint(a).items()):
                yield a
            a, b = b, a+b
    A358311_list = list(islice(A358311_gen(),40))

Formula

phi^n < a(n) < phi^(2n) for n > 4. - Charles R Greathouse IV, Jan 11 2023

A034025 Both primitively and imprimitively represented by x^2+y^2.

Original entry on oeis.org

25, 50, 125, 169, 250, 289, 325, 338, 425, 578, 625, 650, 725, 841, 845, 850, 925, 1025, 1250, 1325, 1369, 1445, 1450, 1525, 1625, 1681, 1682, 1690, 1825, 1850, 2050, 2125, 2197, 2225, 2425, 2525, 2650, 2725, 2738, 2809, 2825, 2873, 2890
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    okQ[n_] := (xy = {x, y} /. {ToRules[Reduce[n == x^2 + y^2, {x, y}, Integers]]}; cnt = Count[xy, {x_, y_} /; GCD[x, y] == 1]; Length[xy] > cnt > 0); Reap[For[n = 1, n <= 3000, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 25 2013 *)

A305553 Numbers that are not the sum of 2 squares and a 4th power.

Original entry on oeis.org

7, 12, 15, 22, 23, 28, 31, 39, 43, 44, 47, 55, 60, 63, 67, 70, 71, 76, 78, 79, 87, 92, 93, 95, 103, 108, 111, 112, 119, 124, 127, 135, 140, 143, 151, 156, 159, 167, 168, 172, 175, 177, 183, 184, 188, 191, 192, 199, 204, 207, 214, 215, 220, 223, 231, 236
Offset: 1

Views

Author

XU Pingya, Jun 20 2018

Keywords

Comments

Numbers of the form 4*A017101(k) are terms of this sequence.
m is a term iff 16m is also.

Crossrefs

Subsequence of A000037, A140823 and A022544.
A004215 and A214891 are subsequences.

Programs

  • Mathematica
    n=239;
    t=Union@Flatten@Table[x^2+y^2+z^4, {x,0,n^(1/2)}, {y,x,(n-x^2)^(1/2)}, {z,0,(n-x^2-y^2)^(1/4)}];
    Complement[Range[0,n], t]

A334736 Dimensions d such that the integer lattice Z^d does not contain the vertices of a regular d-simplex.

Original entry on oeis.org

2, 4, 5, 6, 10, 12, 13, 14, 16, 18, 20, 21, 22, 26, 28, 29, 30, 32, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46, 50, 52, 53, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 82, 84, 85, 86, 88, 90, 92, 93, 94, 96, 98, 100, 101, 102, 104, 106, 108
Offset: 1

Views

Author

Harry Richman, May 08 2020

Keywords

Comments

List contains d such that (1) d is even and d+1 is not a square, or (2) d == 1 (mod 4) and d+1 is not a sum of two squares; proved by Schoenberg.

Examples

			2 is in the list because there is no equilateral triangle in the plane whose vertices all have integer coordinates.
3 is not in the list because there is a regular tetrahedron in space whose vertices have integer coordinates; e.g. (1,1,0), (1,0,1), (0,1,1), (0,0,0).
		

Crossrefs

Complement of A096315.

Extensions

More terms from Jinyuan Wang, May 09 2020
Previous Showing 51-59 of 59 results.