cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A329289 Expansion of g.f. (1 + x) * (1 + x^2) * Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 14, 18, 23, 29, 36, 45, 55, 67, 82, 99, 119, 143, 170, 202, 240, 283, 333, 391, 457, 533, 621, 721, 835, 966, 1114, 1282, 1474, 1690, 1935, 2213, 2525, 2877, 3274, 3719, 4219, 4781, 5409, 6112, 6900, 7778, 8758, 9852, 11068, 12422
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2020

Keywords

Comments

Number of partitions of n into distinct parts if there are two types of 1's and two types of 2's.

Crossrefs

Programs

  • Maple
    series(1/2 * add( x^((n-2)*(n-3)/2) / mul(1 - x^k, k = 1..n), n = 0..12), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 3, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}]

Formula

a(n) = A036469(n) - A036469(n-4).
a(n) ~ exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 11 2020
G.f.: A(x) = 1/2 * Sum_{n >= 0} x^((n-2)*(n-3)/2) / (Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025

A192096 Maximum number of tatami tilings of any m X m square region with exactly n horizontal dimers and m monomers.

Original entry on oeis.org

2, 4, 6, 12, 18, 28, 44, 64, 92, 132, 186, 256, 352, 476, 638, 852, 1124, 1472, 1920, 2484, 3196, 4096, 5216, 6612, 8350, 10496, 13140, 16396, 20380, 25244, 31178, 38380, 47104, 57660, 70380, 85684, 104068, 126080, 152396, 183808, 221208, 265664, 318432
Offset: 0

Views

Author

Frank Ruskey and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jul 15 2011

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			a(0) = 2 because exactly 2 tilings are possible for 0 horizontal dimers and any m >= 2.  For example, with m = 3:
    _ _ _      _ _ _
   |_| |_|    | |_| |
   | |_| |    |_| |_|
   |_|_|_|    |_|_|_|
		

Crossrefs

Programs

  • Maple
    gf:= n-> 2 * mul((1 + x^k)^2, k=1..n):
    a:= n-> coeff(series(gf(n), x, n+1), x, n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 15 2011

Formula

G.f.: 2 * Product_{k>0} (1 + x^k)^2.
a(n) = 2 * A022567(n).

A300417 Expansion of Product_{k>=1} (1 + x^(k*(k+1)/2))^2.

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 3, 6, 3, 4, 10, 8, 5, 10, 11, 8, 14, 16, 11, 18, 22, 18, 23, 22, 22, 34, 31, 26, 39, 40, 33, 50, 56, 36, 53, 74, 51, 62, 86, 68, 77, 98, 86, 88, 102, 106, 120, 130, 120, 136, 157, 134, 157, 194, 155, 182, 241, 194, 196, 256, 237, 236, 288, 282, 273, 324
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Number of partitions of n into distinct triangular parts (A000217), with 2 types of each part.
Self-convolution of A024940.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[(1 + x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000217(k))^2.
a(n) ~ exp(3*Pi^(1/3) * ((sqrt(2)-1) * Zeta(3/2)/2)^(2/3) * n^(1/3)) * ((sqrt(2)-1) * Zeta(3/2) / (2*Pi))^(1/3) / (4*sqrt(3) * n^(5/6)). - Vaclav Kotesovec, Mar 05 2018

A329384 G.f.: (1 + x) * (1 + x^2) * (1 + x^3) * Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 3, 6, 8, 11, 16, 20, 26, 34, 43, 54, 68, 84, 103, 127, 154, 186, 225, 269, 321, 383, 453, 535, 631, 740, 866, 1012, 1178, 1368, 1587, 1835, 2117, 2440, 2804, 3217, 3687, 4215, 4812, 5487, 6244, 7096, 8055, 9128, 10331, 11681, 13187, 14870, 16752, 18846, 21180
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2020

Keywords

Comments

Number of partitions of n into distinct parts if there are two types of 1's, two types of 2's and two types of 3's.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) (1 + x^3) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 4, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}]

Formula

a(n) = A036469(n) + A036469(n-3) - A036469(n-4) - A036469(n-7).
a(n) ~ 2*exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 11 2020

A343204 Numerators of coefficients in expansion of Product_{k>=1} (1 + x^k)^(1/2).

Original entry on oeis.org

1, 1, 3, 13, 67, 239, 1031, 2501, 36579, 109915, 468653, 1043851, 9395751, 21232827, 97493519, 235880373, 7717800611, 17385733651, 82456426833, 175398844079, 1578297716013, 3634938193489, 15867173716609, 34517119775523, 619312307079687, 1363237700933583
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2021

Keywords

Examples

			1, 1/2, 3/8, 13/16, 67/128, 239/256, 1031/1024, 2501/2048, 36579/32768, 109915/65536, 468653/262144, 1043851/524288, ...
		

Crossrefs

Cf. A000009, A022567, A046161 (denominators), A061159, A098987.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d/2, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 12 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1 + x^k)^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator
    a[n_] := a[n] = If[n == 0, 1, (1/(2 n)) Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 25}] // Numerator

Formula

a(n) / A046161(n) ~ exp(sqrt(n/6)*Pi) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Apr 12 2021

A370792 Expansion of Product_{k>=1} (1 + 3^(k+1)*x^k) * (1 + 3^(k-1)*x^k).

Original entry on oeis.org

1, 10, 39, 390, 1521, 7830, 49518, 207360, 951102, 4264650, 22185657, 89579520, 401428224, 1676401110, 7172977275, 31972081050, 130330236546, 537393139200, 2213787635712, 8988968449530, 36073295687070, 150459195064320, 590262148332288, 2362876271009370, 9314694641056095
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 02 2024

Keywords

Comments

In general, if d >= 1 and g.f. = Product_{k>=1} (1 + d^(k+1)*x^k) * (1 + d^(k-1)*x^k), then a(n) ~ d^(n + 1/2) * exp(sqrt(2*n*(Pi^2/3 + log(d)^2))) * (Pi^2/3 + log(d)^2)^(1/4) / (2^(5/4) * sqrt(Pi) * (d+1) * n^(3/4)).

Crossrefs

Cf. A022567 (d=1), A370761 (d=2).

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+3^(k+1)*x^k)*(1+3^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^(n + 1/2) * exp(sqrt(2*n*(Pi^2/3 + log(3)^2))) * (Pi^2/3 + log(3)^2)^(1/4) / (2^(13/4) * sqrt(Pi) * n^(3/4)).

A374018 Expansion of Product_{k>=1} 1 / (1 - x^(3*k-1))^2.

Original entry on oeis.org

1, 0, 2, 0, 3, 2, 4, 4, 7, 6, 13, 10, 19, 18, 27, 30, 42, 44, 63, 66, 91, 100, 130, 144, 187, 206, 263, 294, 364, 412, 506, 568, 696, 782, 943, 1070, 1273, 1444, 1713, 1936, 2285, 2586, 3027, 3428, 3996, 4516, 5243, 5924, 6841, 7730, 8895, 10030, 11512, 12966, 14825, 16696
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[1/(1 - x^(3 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A078182(k) * a(n-k).
a(n) = Sum_{k=0..n} A035386(k) * A035386(n-k).
a(n) ~ exp(2*Pi*sqrt(n)/3) * Pi^(4/3) / (3^(3/2) * Gamma(1/3)^2 * n^(11/12)). - Vaclav Kotesovec, Jun 25 2024

A374019 Expansion of Product_{k>=1} 1 / (1 - x^(4*k-1))^2.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 3, 2, 0, 4, 4, 2, 5, 6, 7, 8, 8, 12, 15, 12, 17, 26, 23, 24, 37, 40, 39, 50, 62, 66, 74, 86, 101, 116, 122, 144, 175, 184, 202, 246, 274, 294, 340, 388, 432, 480, 533, 610, 684, 742, 835, 956, 1045, 1144, 1299, 1450, 1586, 1758, 1965, 2182, 2400, 2638, 2941, 3268, 3560, 3922
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[1/(1 - x^(4 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A050452(k) * a(n-k).
a(n) = Sum_{k=0..n} A035462(k) * A035462(n-k).
a(n) ~ Pi^(3/2) * exp(Pi*sqrt(n/3)) / (2*sqrt(3) * Gamma(1/4)^2 * n). - Vaclav Kotesovec, Jun 25 2024
Previous Showing 31-38 of 38 results.