A226898 Hooley's Delta function: maximum number of divisors of n in [u, eu] for all u. (Here e is Euler's number 2.718... = A001113.)
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 1, 4, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 2
Offset: 1
Examples
The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. For u = 3, {3, 4, 6, 8} are in [3, 3e] = [3, 8.15...] and thus a(24) = 4.
References
- R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
- R. R. Hall and G. Tenenbaum, Divisors. Cambridge Tracts in Mathematics, 90. Cambridge University Press, Cambridge, 1988.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- R. de la Bretèche and G. Tenenbaum, Oscillations localisées sur les diviseurs, J. Lond. Math. Soc. 2 85:3 (2012), pp. 669-693.
- Régis de la Bretèche and Gérald Tenenbaum, Two upper bounds for the Erdős--Hooley Delta-function, arXiv preprint (2022). arXiv:2210.13897 [math.NT]
- Jörg Brüdern, Daniel's twists of Hooley's Delta function, Contributions in Analytic and Algebraic Number Theory, Springer Proceedings in Mathematics 9 (2012), pp 31-82.
- Paul Erdős, On abundant-like numbers, Canad. Math. Bull. 17 (1974), pp. 599-602.
- Paul Erdős and Jean-Louis Nicolas, Méthodes probabilistes et combinatoires en théorie des nombres, Bulletin des Sciences Mathématiques 2 (1976), pp. 301-320.
- P. Erdős and J.-L. Nicolas, Répartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), pp. 65-90.
- R. R. Hall and G. Tenenbaum, The average orders of Hooley's Δ_r-functions, Mathematika 31:1 (1984), pp. 98-109.
- R. R. Hall and G. Tenenbaum, The average orders of Hooley's Δ_r-functions, II, Compositio Math. 60 (1986), pp. 163-186.
- C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
- Dimitris Koukoulopoulos and Terence Tao, A note on the mean value of the Erdős-Hooley Delta function, arXiv preprint (2023). arXiv:2306.08615 [math.NT]
- Helmut Maier and Gérald Tenenbaum, On the set of divisors of an integer, Invent. Math. 76 (1984), pp. 121-128.
- Helmut Maier and Gérald Tenenbaum, On the normal concentration of divisors, J. London Math. Soc. 2 31:3 (1985), pp. 393-400.
- Helmut Maier and Gérald Tenenbaum, On the normal concentration of divisors. II., Math. Proc. Cambridge Philos. Soc. 147:3 (2009), pp. 513-540.
- J.-L. Nicolas, Méthodes probabilistes et combinatoires en théorie des nombres, Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 17 (1975-1976) no. 1, Exposé no. 9, p. 1.
- J. M. Rodríguez Caballero, Symmetric Dyck Paths and Hooley's Δ-Function, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
- Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.
- Index entries for "core" sequences
Programs
-
Haskell
a226898 = maximum . map length . map (\ds@(d:_) -> takeWhile (<= e' d) ds) . init . tails . a027750_row where e' = floor . (* e) . fromIntegral; e = exp 1 -- Reinhard Zumkeller, Jul 06 2013
-
Maple
with(numtheory): a:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1, i=1..nops(l))))(sort([divisors(n)[]])): seq(a(n), n=1..100); # Alois P. Heinz, Jun 21 2013
-
Mathematica
a[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[ Sum[ Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 08 2013, after Pari *)
-
PARI
a(n)=my(d=divisors(n),m=1);for(i=1,#d-1, my(t=exp(1)*d[i]); m=max(sum(j=i,#d,d[j]
-
PARI
a(n)=my(d=divisors(n),r,t); for(i=1,#d\2, t=setsearch(d, d[i]*exp(1)\1,1); t=if(t, t-i, setsearch(d,d[i]*exp(1)\1)+1-i); if(t>r, r=t)); r \\ Charles R Greathouse IV, Mar 01 2018
-
Python
from sympy import divisors, exp def a(n): d = divisors(n) m = 1 for i in range(len(d) - 1): t = exp(1)*d[i] m = max(sum(1 for j in range(i, len(d)) if d[j]
Indranil Ghosh, Jul 19 2017
Formula
a(mn) <= d(m)a(n) where d(n) is A000005.
The average order is between log log x and (log log x)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao. - Charles R Greathouse IV, Jun 26 2023
Comments