cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A014576 Smallest n-digit narcissistic (or Armstrong) number: smallest n-digit number equal to sum of n-th powers of its digits (or 0 if no such number exists).

Original entry on oeis.org

1, 0, 153, 1634, 54748, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 0, 28116440335967, 0, 4338281769391370, 21897142587612075, 0, 1517841543307505039, 63105425988599693916, 128468643043731391252, 0
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 249.
  • C. A. Pickover, Keys to Infinity. New York: W. H. Freeman, pp. 169-170, 1995.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable for more than 10 terms *) a[n_] := For[k = 10^(n-1), True, k++, If[k > 10^n - 1, Return[0], If[k == Total[ IntegerDigits[k]^IntegerLength[k] ], Return[k] ] ] ]; Table[ Print[an = a[n]]; an, {n, 1, 10}] (* Jean-François Alcover, Oct 15 2013 *)

Extensions

Terms and links added by Patrick De Geest, Oct 1998
Broken links fixed by M. F. Hasler, Feb 12 2013

A162216 Base-3 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-3 digits, for some k.

Original entry on oeis.org

0, 1, 2, 5, 8, 17, 33, 34, 65, 66, 67, 131, 258, 259, 386, 512, 513, 514, 1026, 1027, 2049, 2050, 3075, 3076, 4100, 16388, 16389, 16390, 57345, 57346, 65538, 65539, 196610, 262149, 262150, 458754, 458755, 786438, 786439, 1048581, 1048582, 1310724
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever 3|a(n), then a(n+1) = a(n) + 1 (for the same k). The first 6 terms are exactly all the base-3 narcissistic numbers (where k = number of base-3 digits). For these numbers in other bases b = 4, ..., 16 see A010344 - A161953. - M. F. Hasler, Nov 18 2019

Crossrefs

Cf. A162217 (corresponding exponents), A033835, A162218. In other bases: A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9), A023052 (base 10).

Programs

A162219 Base 4 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-4 digits, for some k.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 28, 29, 32, 33, 35, 43, 55, 62, 83, 128, 129, 243, 512, 513, 922, 2048, 2049, 2316, 2317, 2444, 2445, 2571, 2699, 7330, 8192, 8193, 13124, 13125, 20710, 21222, 32768, 32769, 40392, 40393, 131072, 131073, 524288, 524289, 1075174
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever a(n) is a multiple of 4, then a(n+1) = a(n) + 1 is also a base 4 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019

Crossrefs

Cf. A162220 (corresponding exponents), A010344 (restriction to power = number of digits), A033836, A162221. In other bases: A162216 (base 3), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9), A023052 (base 10).

Programs

A162222 Base 5 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-5 digits, for some k.

Original entry on oeis.org

0, 1, 2, 3, 4, 13, 18, 28, 118, 257, 289, 308, 353, 419, 4890, 4891, 9113, 16387, 66562, 322217, 1874374, 172449032, 268533762, 338749352, 2204944815, 2204944816, 2415951874, 3250054360, 3250054361, 3264337734, 4424304070, 4424304071
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever a(n) is a multiple of 5, then a(n+1) = a(n) + 1 is also a base 5 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019

Crossrefs

Cf. A162223 (corresponding exponents), A010346 (restriction to power = number of digits), A033837, A162224. In other bases: A162216 (base 3), A162219 (base 4), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9), A023052 (base 10).

Programs

A162225 Base-6 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-6 digits, for some k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 99, 190, 251, 308, 2292, 2293, 2324, 3432, 3433, 6197, 36140, 269458, 391907, 10067135, 1428423394, 2510142206, 2511720147, 3866632806, 3866632807, 3930544834, 4953134588, 5018649129, 6170640875, 32693825124, 32693825125
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever a(n) is a multiple of 6, then a(n+1) = a(n) + 1 is also a base-6 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019

Crossrefs

Cf. A162226 (corresponding exponents), A010348 (restriction to power = number of digits), A033838, A162227. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162228 (base 7), A162231 (base 8), A162234 (base 9), A023052 (base 10).

Programs

  • PARI
    select( {is_A162225(n, b=6)=if(n1 && forstep(p=logint(n,t), logint(n, vecsum(b)), -1, (t=vecsum([d^p|d<-b]))>n|| return(t==n)))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019

A162228 Base 7 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-7 digits, for some k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 16, 25, 32, 45, 65, 133, 134, 152, 250, 1542, 3190, 3222, 3612, 3613, 4183, 9286, 35411, 37271, 72865, 191334, 193393, 376889, 535069, 794376, 1110699, 2236488, 3021897, 4431562, 8094840, 9885773, 10883814, 16219922
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever a(n) is a multiple of 7, then a(n+1) = a(n) + 1 is also a base 7 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019

Crossrefs

Cf. A162229 (corresponding exponents), A010350 (restriction to power = number of digits), A033839, A162230. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162231 (base 8), A162234 (base 9), A023052 (base 10).

Programs

A162231 Base 8 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-8 digits, for some k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 20, 52, 92, 128, 129, 133, 256, 257, 272, 273, 307, 432, 433, 1024, 1025, 1056, 1057, 2323, 8192, 8193, 13379, 16384, 16385, 16512, 16513, 16819, 17864, 17865, 24583, 25639, 65536, 65537, 65792, 65793, 212419, 524288, 524289
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever a(n) is a multiple of 8, then a(n+1) = a(n) + 1 is also a base 8 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019

Crossrefs

Cf. A162232 (corresponding exponents), A010354 (restriction to power = number of digits), A033840, A162233. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162234 (base 9), A023052 (base 10).

Programs

A162234 Base 9 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-9 digits, for some k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 27, 28, 41, 50, 126, 127, 243, 244, 353, 468, 469, 1052, 1824, 2187, 2188, 8052, 8295, 9857, 19683, 19684, 36804, 65538, 65539, 177147, 177148, 1198372, 1594323, 1594324, 3357009, 3357010, 5300099, 6287267, 10097892
Offset: 1

Views

Author

Joseph Myers, Jun 28 2009

Keywords

Comments

Whenever a(n) is a multiple of 9, then a(n+1) = a(n) + 1 is also a base 9 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019

Crossrefs

Cf. A162235 (corresponding exponents), A010353 (restriction to power = number of digits), A033841, A162236. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A023052 (base 10).

Programs

  • PARI
    select( {is_A162234(n, b=9)=nn|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019

A052464 Fixed points for operation of repeatedly replacing a number with the sum of the fifth power of its digits.

Original entry on oeis.org

0, 1, 4150, 4151, 54748, 92727, 93084, 194979
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2000

Keywords

Comments

Equivalently, numbers equal to the sum of 5th powers of their decimal digits. Since this sum is <= 9^5*d for a d-digit number n >= 10^(d-1), there cannot be such a number with more than 6 digits. - M. F. Hasler, Apr 12 2015

Examples

			a(2) = 4150 since 4^5 + 1^5 + 5^5 + 0^5 = 1024 + 1 + 3125 + 0 = 4150.
		

Crossrefs

Programs

A053540 a(n) = n*9^(n-1).

Original entry on oeis.org

1, 18, 243, 2916, 32805, 354294, 3720087, 38263752, 387420489, 3874204890, 38354628411, 376572715308, 3671583974253, 35586121596606, 343151886824415, 3294258113514384, 31501343210481297, 300189270593998242, 2851798070642983299, 27017034353459841780
Offset: 1

Views

Author

Barry E. Williams, Jan 15 2000

Keywords

Crossrefs

Related to computing A023052.

Programs

Formula

From Colin Barker, Oct 17 2012: (Start)
a(n) = 18*a(n-1) - 81*a(n-2).
G.f.: x/(1-9*x)^2. (End)
E.g.f.: x*exp(9*x). - G. C. Greubel, May 16 2019
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 9*log(9/8).
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(10/9). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 29 2001
Edited by N. J. A. Sloane at the suggestion of Reinhard Zumkeller, Sep 16 2007
Previous Showing 11-20 of 32 results. Next