A372499 G.f. satisfies A(A(A(x))) = F(x), where F(x) is the g.f. for A053540(n) = n*9^(n-1).
0, 1, 6, 9, 54, 0, -1944, 44469, -323676, -5990193, 179194032, 484654509, -105337511100, 757846026261, 85419734244300, -1707846638480514, -90276038133498612, 3464956887464464164, 118426852966952180502, -7984363576091338944720, -181143285020960488524558
Offset: 0
Keywords
Examples
A(A(x)) = x + 12*x^2 + 90*x^3 + 594*x^4 + 3807*x^5 + 20412*x^6 + 123201*x^7 + 1032264*x^8 - 1463103*x^9 - 35468766*x^10 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
Formula
Define the sequence b(n,m) as follows. If n
A023052 Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
Offset: 1
Examples
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
Links
- Jerome Raulin, Table of n, a(n) for n = 1..345 (terms 1..255 from Joseph Myers)
- Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
- Hans Havermann, Extended table of values for A023052 and A046074
- Donald E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle 9B A Potpourri of Puzzles
- J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383.
- J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Narcissistic Number
- Index entries for sequences related to powerful numbers
Crossrefs
Cf. A005188 (here the power must be equal to the number of digits).
Programs
-
Mathematica
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
-
PARI
is(n)=if(n<10, return(1)); my(d=digits(n),m=vecmax(d)); if(m<2, return(0)); for(k=3,logint(n,m), if(sum(i=1,#d,d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
-
PARI
select( is_A023052(n,b=10)={nn|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
Extensions
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019
A212703 Main transitions in systems of n particles with spin 4.
8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1
Comments
Please, refer to the general explanation in A212697.
This sequence is for base b=9 (see formula), corresponding to spin S=(b-1)/2=4.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (18,-81).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
-
PARI
mtrans(n, b) = n*(b-1)*b^(n-1); for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
-
PARI
Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
-
PARI
a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015
Formula
a(n) = n*(b-1)*b^(n-1). For this sequence, set b=9.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) for n > 2.
G.f.: 8*x/(9*x-1)^2. (End)
From Elmo R. Oliveira, May 13 2025: (Start)
E.g.f.: 8*x*exp(9*x).
A053539 a(n) = n * 8^(n-1).
0, 1, 16, 192, 2048, 20480, 196608, 1835008, 16777216, 150994944, 1342177280, 11811160064, 103079215104, 893353197568, 7696581394432, 65970697666560, 562949953421312, 4785074604081152, 40532396646334464, 342273571680157696, 2882303761517117440, 24211351596743786496
Offset: 0
Comments
The Szeged index of the hypercube Q_n (see the Ashrafi et al. reference, p. 45, last line). - Emeric Deutsch, Aug 06 2014
For n > 3, 2*a(n) is the number of spanning trees in a superprism on 2*n vertices (see Bogdanowicz). - Stefano Spezia, May 05 2024
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. R. Ashrafi, B. Manoochehrian, and H. Yousefi-Azari, On Szeged polynomial of a graph, Bull. Iranian Math. Soc., 33, 2007, 37-46. - _Emeric Deutsch_, Aug 06 2014
- Zbigniew R. Bogdanowicz, The number of spanning trees in a superprism, Discrete Math. Lett. 13 (2024) 66-73. See Theorem 3.1.
- Frank Ellermann, Illustration of binomial transforms.
- Index entries for linear recurrences with constant coefficients, signature (16,-64).
Programs
-
GAP
List([0..20], n-> n*8^(n-1)); # G. C. Greubel, May 16 2019
-
Magma
[n*8^(n-1): n in [0..20]]; // Vincenzo Librandi, Feb 09 2011
-
Maple
a := proc(n) option remember; if n<2 then n else 16*a(n-1)-64*a(n-2) end if end proc: seq(a(n), n = 0 .. 20); # Emeric Deutsch, Aug 06 2014
-
Mathematica
Table[n 8^(n-1),{n,0,20}] (* or *) LinearRecurrence[{16,-64},{0,1},20] (* Harvey P. Dale, Feb 01 2017 *)
-
PARI
a(n) = n*8^(n-1); \\ Joerg Arndt, Aug 07 2014
-
Sage
[n*8^(n-1) for n in (0..20)] # G. C. Greubel, May 16 2019
Formula
a(n) = 16*a(n-1) - 64*a(n-2), with a(0)=0, a(1)=1. - Emeric Deutsch, Aug 06 2014
From G. C. Greubel, May 16 2019: (Start)
G.f.: x/(1-8*x)^2.
E.g.f.: x*exp(8*x). (End)
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 8*log(8/7).
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(9/8). (End)
Extensions
Offset corrected and name edited by Emeric Deutsch, Aug 06 2014
A104002 Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns that start with 1 except one fixed pattern and containing it exactly once.
1, 2, 1, 3, 4, 1, 4, 12, 6, 1, 5, 32, 27, 8, 1, 6, 80, 108, 48, 10, 1, 7, 192, 405, 256, 75, 12, 1, 8, 448, 1458, 1280, 500, 108, 14, 1, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 10, 2304, 17496, 28672, 18750, 6480, 1372, 192, 18, 1, 11, 5120, 59049, 131072
Offset: 2
Comments
T(n+k,k+1) = total number of occurrences of any given letter in all possible n-length words on a k-letter alphabet. For example, with the 2 letter alphabet {0,1} there are 4 possible 2-length words: {00,01,10,11}. The letter 0 occurs 4 times altogether, as does the letter 1. T(4,3) = 4. - Ross La Haye, Jan 03 2007
Table T(n,k) = k*n^(k-1) n,k > 0 read by antidiagonals. - Boris Putievskiy, Dec 17 2012
Examples
Triangle begins: 1; 2, 1; 3, 4, 1; 4, 12, 6, 1; 5, 32, 27, 8, 1; 6, 80, 108, 48, 10, 1; 7, 192, 405, 256, 75, 12, 1; 8, 448, 1458, 1280, 500, 108, 14, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150).
- T. Mansour, Permutations containing and avoiding certain patterns, arXiv:math/9911243 [math.CO], 1999-2000.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
Table[(n - k + 1) (k - 1)^(n - k), {n, 2, 12}, {k, 2, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
Formula
T(n, k) = (n-k+1) * (k-1)^(n-k), k<=n.
As a linear array, the sequence is a(n) = A004736(n)*A002260(n)^(A004736(n)-1) or a(n) = ((t*t+3*t+4)/2-n)*(n-(t*(t+1)/2))^((t*t+3*t+4)/2-n-1), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012
A230540 a(n) = 2*n*3^(2*n-1).
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0
Comments
Arithmetic derivative of 9^n: a(n) = A003415(9^n).
Sum of reciprocals of a(n), for n>0: (3/2)*log(9/8).
Links
- Bruno Berselli, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (18,-81).
Crossrefs
Programs
-
Magma
[2*n*3^(2*n-1): n in [0..20]];
-
Mathematica
Table[2 n 3^(2 n - 1), {n, 0, 20}]
-
PARI
a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
A317052 Triangle read by rows: T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1, 9, 81, 1, 729, 18, 6561, 243, 1, 59049, 2916, 27, 531441, 32805, 486, 1, 4782969, 354294, 7290, 36, 43046721, 3720087, 98415, 810, 1, 387420489, 38263752, 1240029, 14580, 45, 3486784401, 387420489, 14880348, 229635, 1215, 1, 31381059609, 3874204890, 172186884, 3306744, 25515, 54
Offset: 0
Comments
The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013616 ((1+9*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038291 ((9+x)^n).
The coefficients in the expansion of 1/(1-9*x-x^2) are given by the sequence generated by the row sums (see A099371).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 9.109772228646443655... (a metallic mean), when n approaches infinity; (see A176522: ((9+sqrt(85))/2)).
Examples
Triangle begins: 1; 9; 81, 1; 729, 18; 6561, 243, 1; 59049, 2916, 27; 531441, 32805, 486, 1; 4782969, 354294, 7290, 36; 43046721, 3720087, 98415, 810, 1; 387420489, 38263752, 1240029, 14580, 45; 3486784401, 387420489, 14880348, 229635, 1215, 1; 31381059609, 3874204890, 172186884, 3306744, 25515, 54;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100.
Links
Crossrefs
Programs
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
PARI
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 9*T(n-1, k)+T(n-2, k-1))); tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A320531 T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Comments
T(n,k) is the number of length n*k binary words of n consecutive blocks of length k, respectively, one of the blocks having exactly k letters 1, and the other having exactly one letter 0. First column follows from the next definition.
In Kauffman's language, T(n,k) is the total number of Jordan trails that are obtained by placing state markers at the crossings of the Pretzel universe P(k, k, ..., k) having n tangles, of k half-twists respectively. In other words, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) such that the final diagram is a single Jordan curve. The aforementionned binary words encode these operations by assigning each tangle a length k binary words with the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (2*k, -k^2).
Examples
Square array begins: 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 2, 4, 6, 8, 10, 12, 14, ... A005843 0, 3, 12, 27, 48, 75, 108, 147, ... A033428 0, 4, 32, 108, 256, 500, 864, 1372, ... A033430 0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792 0, 6, 192, 1458, 6144, 18750, 46656, 100842, ... 0, 7, 448, 5103, 28672, 109375, 326592, 823543, ... ... T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
References
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
Links
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
Crossrefs
Programs
-
Mathematica
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]]; Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
Maxima
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$ tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Formula
T(n,k) = (2*k)*T(n-1,k) - (k^2)*T(n-2,k).
G.f. for columns: x/(1 - k*x)^2.
E.g.f. for columns: x*exp(k*x).
T(n,1) = A001477(n).
T(n,2) = A001787(n).
T(n,3) = A027471(n+1).
T(n,4) = A002697(n).
T(n,5) = A053464(n).
T(n,6) = A053469(n), n > 0.
T(n,7) = A027473(n), n > 0.
T(n,8) = A053539(n).
T(n,9) = A053540(n), n > 0.
T(n,10) = A053541(n), n > 0.
T(n,11) = A081127(n).
T(n,12) = A081128(n).
Comments