A016140
Expansion of 1/((1-3*x)*(1-8*x)).
Original entry on oeis.org
1, 11, 97, 803, 6505, 52283, 418993, 3354131, 26839609, 214736555, 1717951489, 13743789059, 109950843913, 879608345627, 7036871547985, 56294986732787, 450359936909017, 3602879624412299, 28823037382718881, 230584300224012515, 1844674405278884521, 14757395252691429371, 118059162052912494577, 944473296517443135443
Offset: 0
Sequences with g.f. 1/((1-n*x)*(1-8*x)):
A001018 (n=0),
A023001 (n=1),
A016131 (n=2), this sequence (n=3),
A016152 (n=4),
A016162 (n=5),
A016170 (n=6),
A016177 (n=7),
A053539 (n=8),
A016185 (n=9),
A016186 (n=10),
A016187 (n=11),
A016188 (n=12),
A060195 (n=16).
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-8*x)))); // Vincenzo Librandi, Jun 24 2013
-
Table[(8^(n+1)-3^(n+1))/5, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
CoefficientList[Series[1/((1-3 x)(1-8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 24 2013 *)
LinearRecurrence[{11,-24},{1,11},30] (* Harvey P. Dale, Feb 03 2022 *)
-
Vec(1/((1-3*x)*(1-8*x))+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
-
[lucas_number1(n,11,24) for n in range(1, 30)] # Zerinvary Lajos, Apr 27 2009
A212702
Main transitions in systems of n particles with spin 7/2.
Original entry on oeis.org
7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).
-
LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
-
Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
Original entry on oeis.org
0, 8, 128, 1536, 16384, 163840, 1572864, 14680064, 134217728, 1207959552, 10737418240, 94489280512, 824633720832, 7146825580544, 61572651155456, 527765581332480, 4503599627370496, 38280596832649216, 324259173170675712, 2738188573441261568, 23058430092136939520
Offset: 0
A104002
Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns that start with 1 except one fixed pattern and containing it exactly once.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 12, 6, 1, 5, 32, 27, 8, 1, 6, 80, 108, 48, 10, 1, 7, 192, 405, 256, 75, 12, 1, 8, 448, 1458, 1280, 500, 108, 14, 1, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 10, 2304, 17496, 28672, 18750, 6480, 1372, 192, 18, 1, 11, 5120, 59049, 131072
Offset: 2
Triangle begins:
1;
2, 1;
3, 4, 1;
4, 12, 6, 1;
5, 32, 27, 8, 1;
6, 80, 108, 48, 10, 1;
7, 192, 405, 256, 75, 12, 1;
8, 448, 1458, 1280, 500, 108, 14, 1;
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150).
- T. Mansour, Permutations containing and avoiding certain patterns, arXiv:math/9911243 [math.CO], 1999-2000.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Cf. Left-edge columns include
A001787,
A027471,
A002697,
A053464,
A053469,
A027473,
A053539,
A053540,
A053541,
A081127,
A081128.
-
Table[(n - k + 1) (k - 1)^(n - k), {n, 2, 12}, {k, 2, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
A230539
a(n) = 3*n*2^(3*n-1).
Original entry on oeis.org
0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0
-
[3*n*2^(3*n-1): n in [0..20]];
-
A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
-
Table[3 n 2^(3 n - 1), {n,0,20}]
LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
-
a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013
A317028
Triangle read by rows: T(0,0) = 1; T(n,k) = 8 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 8, 64, 1, 512, 16, 4096, 192, 1, 32768, 2048, 24, 262144, 20480, 384, 1, 2097152, 196608, 5120, 32, 16777216, 1835008, 61440, 640, 1, 134217728, 16777216, 688128, 10240, 40, 1073741824, 150994944, 7340032, 143360, 960, 1, 8589934592, 1342177280, 75497472, 1835008, 17920, 48
Offset: 0
Triangle begins:
1;
8;
64, 1;
512, 16;
4096, 192, 1;
32768, 2048, 24;
262144, 20480, 384, 1;
2097152, 196608, 5120, 32;
16777216, 1835008, 61440, 640, 1;
134217728, 16777216, 688128, 10240, 40;
1073741824, 150994944, 7340032, 143360, 960, 1;
8589934592, 1342177280, 75497472, 1835008, 17920, 48;
68719476736, 11811160064, 754974720, 22020096, 286720, 1344, 1;
549755813888, 103079215104, 7381975040, 251658240, 4128768, 28672, 56;
4398046511104, 893353197568, 70866960384, 2768240640, 55050240, 516096, 1792, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 8*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Showing 1-7 of 7 results.
Comments