cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 89 results. Next

A163162 Numbers k such that sigma(k) is not prime.

Original entry on oeis.org

1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2009

Keywords

Examples

			a(1)=1 because A000203(1) is not prime. a(2)=3 because A000203(3)=3 is not prime. a(3)=5 because sigma(5)=6 is not prime.
		

Crossrefs

Complement of A023194.
Cf. A000203.

Programs

  • Magma
    [n: n in [1..80]| not IsPrime(SumOfDivisors(n))]; // Vincenzo Librandi, Jan 18 2013
    
  • Mathematica
    Select[Range[1000], ! PrimeQ[DivisorSigma[1, #]]&] (* Vincenzo Librandi, Jan 18 2013 *)
  • PARI
    isok(k) = !isprime(sigma(k)); \\ Michel Marcus, Mar 10 2022

Formula

a(n) ~ n. - Charles R Greathouse IV, May 27 2011

Extensions

Edited by R. J. Mathar, Jul 25 2009

A187825 Smallest k such that the partial sums of the divisors of k (in decreasing order) generate n primes.

Original entry on oeis.org

1, 3, 2, 140, 560, 2160, 2772, 2016, 16830, 5148, 20592, 10640, 69300, 31200, 156240, 177840, 288288, 143520, 927360, 1203840, 752400, 1242360, 2702700, 2948400, 3996720, 1884960, 5896800, 2692800, 1244880, 15800400, 4586400, 11060280, 15301440, 14414400
Offset: 0

Views

Author

Michel Lagneau, Dec 27 2012

Keywords

Comments

It appears that a(n) is even for n > 0 and nonsquarefree for n > 2. The corresponding triangle of k in which row n gives the n primes starts:
k = 1 -> no prime
k = 3 -> 3;
k = 2 -> 2, 3;
k = 140 -> 293, 307, 317;
k = 560 -> 1373, 1451, 1481, 1487.

Examples

			a(3) = 140 because the partial sums of the divisors in decreasing order {140, 70, 35, 28, 20, 14, 10, 7, 5, 4, 2, 1} that generate 3 prime numbers are
140 + 70 + 35 + 28 + 20 = 293;
140 + 70 + 35 + 28 + 20 + 14 = 307;
140 + 70 + 35 + 28 + 20 + 14 + 10 = 317.
		

Crossrefs

Programs

Extensions

a(19)-a(33) by Jean-François Alcover, Dec 28 2012

A193065 Odd numbers N for which numerator(sigma(N)/N) is a prime.

Original entry on oeis.org

9, 25, 289, 729, 1521, 1681, 2401, 3481, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 83521, 85849, 146689, 257049, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089, 1885129, 2036329, 2211169
Offset: 1

Views

Author

M. F. Hasler, Jul 15 2011

Keywords

Comments

This sequence includes all odd terms of A023194.
For most of the terms, sigma(N) is prime (i.e., N is in A023194); the first two exceptions are sigma(a(5))=3*13*61 and sigma(a(20))=13*30941. See A193072 for (the square root of) these exceptions.
It is well known that sigma(N) can't be odd unless N is a square (since sigma is multiplicative and sigma(p^e)=1+...+p^e) or twice a square (excluded here).
See A193066 for the square roots of the terms.
The sequence of numbers n for which A002129(n) is prime starts as this sequence here, but excludes a(5), a(20) etc. - R. J. Mathar, Sep 18 2011

Crossrefs

Cf. A000203.

Programs

  • Mathematica
    Select[Range[1,23*10^5,2],PrimeQ[Numerator[DivisorSigma[1,#]/#]]&] (* Harvey P. Dale, Sep 17 2017 *)
  • PARI
    forstep(N=1,1e7,2,isprime(numerator(sigma(N)/N)) && print1(N","))

Formula

a(n) = A193066(n)^2.

A193071 Odd numbers N for which sigma(N^2) is not prime.

Original entry on oeis.org

1, 7, 9, 11, 13, 15, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 51, 53, 55, 57, 61, 63, 65, 67, 69, 73, 75, 77, 79, 81, 83, 85, 87, 91, 93, 95, 97, 99, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 127, 129, 133, 135, 137, 139, 141, 143, 145, 147
Offset: 1

Views

Author

M. F. Hasler, Jul 15 2011

Keywords

Comments

The function sigma(n) (=A000203(n)) takes odd values when n is a square or twice a square. Thus, odd numbers n for which sigma(n) is prime (cf. A023194) must be odd squares. This sequence gives the odd numbers whose square yields a composite sum of divisors (or 1).
This is the complement of A193070 in the odd numbers A005408.

Programs

  • Mathematica
    Select[Range[1,151,2],!PrimeQ[DivisorSigma[1,#^2]]&] (* Harvey P. Dale, Dec 13 2012 *)
  • PARI
    forstep(N=1, 1e7, 2, !isprime(sigma(N^2)) && print1(N", "))

Formula

A248963 Prime powers p^m for which sigma(p^2m) is not prime.

Original entry on oeis.org

1, 7, 9, 11, 13, 16, 19, 23, 25, 29, 31, 32, 37, 43, 47, 53, 61, 67, 73, 79, 81, 83, 97, 103, 107, 109, 113, 121, 127, 128, 137, 139, 149, 151, 157, 163, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 257, 263, 269, 271, 277, 281, 283, 307, 311, 313, 317, 331
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2014

Keywords

Comments

sigma(x) cannot be prime unless x is a square of a prime power, x = p^2m, cf. A055638 and A023194. This sequence lists the complement: prime powers whose square does not have a prime sum of divisors.
Although generally 1 is not considered a prime power, it seemed logical for various good reasons to include the initial term a(1)=1.

Crossrefs

Programs

  • PARI
    for(n=1,999,isprimepower(n)||next;isprime(sigma(n^2))||print1((n)","))

Formula

A248963 = A000961 \ A055638, i.e., the complement of A055638 in A000961.

A249760 Numbers k such that k+1 and sigma(k) are both primes.

Original entry on oeis.org

2, 4, 16, 65536
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2014

Keywords

Comments

4 is the only number k such that k-1 and sigma(k) are both primes.
Corresponding values of k+1 and sigma(k) are in A249759 and A249761.
Conjectures: (1) sequence is finite; (2) a(n) + 1 is a Fermat prime (A019434); (3) sigma(a(n)) is a Mersenne prime (A000668).
Subsequence of A023194, and by a comment in that entry it follows that each term is a prime power. From that conjectures (2) and (3) above easily follow. - Jeppe Stig Nielsen, Jan 13 2015

Examples

			16 is a term because 16+1=17 and sigma(16)=31 are both primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^8] | IsPrime(n+1) and IsPrime(SumOfDivisors(n))];
  • Mathematica
    Select[Range[10^5], PrimeQ[# + 1]&& PrimeQ[DivisorSigma[1, #]] &] (* Vincenzo Librandi, Nov 14 2014 *)

Formula

a(n) = A249759(n) - 1.

A252040 Least number k such that the sum of the n-th powers of divisors of k is prime, or 0 if there is no such k.

Original entry on oeis.org

2, 2, 4, 2, 3418801, 0, 64, 2, 4, 0, 21611482313284249, 0, 38580382095460899155325996786287338133521, 0, 0, 2, 2908327322588596409721563830760333292497745890881, 0, 366742604046618684582110328334808145525757868881, 0, 0, 0, 264638735999480827156185738343112840094453729311824181089
Offset: 1

Views

Author

Derek Orr, Dec 12 2014

Keywords

Comments

a(n) = 2 if and only if 2^n + 1 is in A019434.
From Jinyuan Wang, Jan 30 2021: (Start)
a(n) = 0 if n > 1 is not a prime power. Proof: note that sigma_n(k) = Product_{i=1..m} (1 + p_i^n + ... + p_i^(n*e_i)), where k = Product_{i=1..m} p_i^e_i. We only need to prove when n > 1 is not a prime power and e > 1, s = Sum_{i=0..e-1} p^(n*i) = (p^(n*e) - 1)/(p^n - 1) is composite. If e is prime, then s is divisible by (p^(e^(t+1)) - 1)/(p^(e^t) - 1), where t is the e-adic valuation of n. If e is composite, then s is divisible by (p^(n*q) - 1)/(p^n - 1), where q is a prime factor of e.
Corollary: k must be of the form p^(e - 1) when n = e^t, where p and e are primes. Therefore, a(2^t) = 0 if 2^2^t + 1 is composite. (End)

Examples

			2 has two divisors, 2 and 1. 2^3 + 1^3 = 9 is not prime.
3 has two divisors, 3 and 1. 3^3 + 1^3 = 28 is not prime.
4 has three divisors, 4, 2, and 1. 4^3 + 2^3 + 1^3 = 73 is prime. So, a(3) = 4.
		

Crossrefs

Cf. A023194 (sigma(n) is prime), A063783 (sigma_3(n) is prime).

Programs

  • Mathematica
    a252040[n_Integer] := If[PrimePowerQ[n] && (p=First@ First@ FactorInteger[n])>2, q=2; While[!PrimeQ[DivisorSigma[n, q^(p-1)]], q=NextPrime[q]]; q^(p-1), 2*Boole[PrimeQ[2^n+1]]]; a252040 /@ Range[10] (* Michael De Vlieger, Dec 13 2014 *) (* modified by Jinyuan Wang, Jan 30 2021 *)
  • PARI
    a(n) = if(isprimepower(n, &p) && p>2, my(q=2); while(!ispseudoprime(sigma(q^(p-1), n)), q=nextprime(q+1)); q^(p-1), 2*isprime(2^n+1)); \\ Modified by Jinyuan Wang, Jan 25 2021

Extensions

Name edited by and more terms from Jinyuan Wang, Jan 30 2021

A275938 Numbers m such that d(m) is prime while sigma(m) is not prime (where d(m) = A000005(m) and sigma(m) = A000203(m)).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1

Views

Author

Altug Alkan, Aug 12 2016

Keywords

Comments

From Robert Israel, Aug 12 2016: (Start)
d(m) is prime iff m = p^k where p is prime and k+1 is prime.
For such m, sigma(m) = 1 + p + ... + p^k = (p*m-1)/(p-1).
The sequence contains 2^(q-1) for q in A054723,
3^(q-1) for q prime but not in A028491,
5^(q-1) for q prime but not in A004061,
7^(q-1) for q prime but not in A004063, etc.
In particular, it contains all odd primes. (End)

Examples

			49 is a term because A000005(49) = 3 is prime while sigma(49) = 57 is not.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, {2,seq(p,p=3..N,2)}):
    fp:= proc(p) local q,res;
      q:= 2;
      res:= NULL;
      while p^(q-1) <= N do
         if not isprime((p^q-1)/(p-1)) then res:= res, p^(q-1) fi;
         q:= nextprime(q);
      od;
      res;
    end proc:
    sort(convert(map(fp, P),list)); # Robert Israel, Aug 12 2016
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")));

Formula

UNION of A000040 and A286095 (except for the term 2). - Bill McEachen, Jul 16 2024

A278913 a(n) is the smallest number k with prime sum of divisors such that tau(k) = n-th prime.

Original entry on oeis.org

2, 4, 16, 64, 9765625, 4096, 65536, 262144, 1471383076677527699142172838322885948765175969, 10264895304762966931257013446474591264089923314972889033759201, 1073741824, 18701397461209715023927088008788055619800417991632621566284510161
Offset: 1

Views

Author

Jaroslav Krizek, Nov 30 2016

Keywords

Comments

tau(n) = A000005(n) = the number of divisors of n.
a(11) = 1073741824; a(n) > A023194(10000) = 5896704025969 for n = 9, 10 and n >= 12.

Examples

			a(3) = 16 because 16 is the smallest number with prime values of sum of divisors (sigma(16) = 31) such that tau(16) = 5 = 3rd prime.
		

Crossrefs

Programs

  • Magma
    A278913:=func; [A278913(n): n in[1..8]];
    
  • Mathematica
    A278913[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]^(Prime[n] - 1) (* Davin Park, Dec 28 2016 *)
  • PARI
    a(n) = {my(k=1); while(! (isprime(sigma(k)) && isprime(p=numdiv(k)) && (primepi(p) == n)), k++); k;} \\ Michel Marcus, Dec 03 2016

Formula

a(n) = A123487(n)^(prime(n)-1). - Davin Park, Dec 10 2016

Extensions

More terms from Davin Park, Dec 08 2016

A286095 Composite numbers n such that tau(n) (number of divisors of n) is prime and sigma(n) (sum of divisors of n) is not prime.

Original entry on oeis.org

49, 81, 121, 169, 361, 529, 625, 841, 961, 1024, 1369, 1849, 2209, 2809, 3721, 4489, 5329, 6241, 6889, 9409, 10609, 11449, 11881, 12769, 14641, 16129, 18769, 19321, 22201, 22801, 24649, 26569, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289
Offset: 1

Views

Author

Bernard Schott, May 22 2017

Keywords

Comments

If sigma(n) is prime (A023194) then tau(n) is prime too. (See Crux Mathematicorum link.)
But the reverse is false; the numbers which verify tau(n) prime and sigma(n) not prime are in the sequence A275938.
All odd primes belong to the sequence A275938, but there are also in this sequence composite numbers which are all prime powers, these prime powers are here.

Examples

			tau(49) = 3 and sigma(49) = 57 = 3 * 19.
		

Crossrefs

Programs

  • Maple
    for n from 2 to 550000 do p(n):=tau(n);
    if not isprime(n) and is prime(p(n)) and not isprime(sigma(n)) then print (n,p(n),sigma(n)) else fi; od:
    # alternative
    N:= 10^5: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    S:= {}:
    for p in P do
      k:= 1:
      do
        k:= nextprime(k+1)-1;
        if p^k > N then break fi;
        if not isprime((p^(k+1)-1)/(p-1)) then S:= S union {p^k} fi
      od
    od:
    sort(convert(S,list)); # Robert Israel, Jun 05 2017
  • Mathematica
    Select[Range[10^5], Function[n, And[CompositeQ@ n, Map[PrimeQ@ DivisorSigma[#, n] &, {0, 1}] == {True, False}]]] (* Michael De Vlieger, May 24 2017 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, if (isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")););} \\ Michel Marcus, May 24 2017
Previous Showing 51-60 of 89 results. Next