cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A347784 Number of compositions (ordered partitions) of n into at most 3 powers of 2.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 6, 6, 5, 5, 8, 6, 6, 6, 6, 0, 5, 5, 8, 6, 8, 6, 6, 0, 6, 6, 6, 0, 6, 0, 0, 0, 5, 5, 8, 6, 8, 6, 6, 0, 8, 6, 6, 0, 6, 0, 0, 0, 6, 6, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 5, 5, 8, 6, 8, 6, 6, 0, 8, 6, 6, 0, 6, 0, 0, 0, 8, 6, 6, 0, 6, 0, 0, 0, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length@Flatten[Permutations/@IntegerPartitions[n,3,Select[Range@n,IntegerQ@Log2@#&]],1],{n,0,100}] (* Giorgos Kalogeropoulos, Sep 13 2021 *)

A347785 Number of compositions (ordered partitions) of n into at most 4 powers of 2.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 12, 14, 18, 17, 18, 22, 24, 22, 26, 24, 18, 17, 26, 22, 30, 30, 34, 24, 24, 22, 34, 24, 26, 24, 24, 0, 18, 17, 26, 22, 38, 30, 34, 24, 30, 30, 42, 24, 34, 24, 24, 0, 24, 22, 34, 24, 34, 24, 24, 0, 26, 24, 24, 0, 24, 0, 0, 0, 18, 17, 26, 22, 38, 30
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length@Flatten[Permutations/@IntegerPartitions[n,4,Select[Range@n,IntegerQ@Log2@#&]],1],{n,0,69}] (* Giorgos Kalogeropoulos, Sep 13 2021 *)

A347786 Number of compositions (ordered partitions) of n into at most 5 powers of 2.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 17, 24, 33, 42, 49, 52, 64, 72, 76, 84, 93, 82, 81, 92, 96, 100, 124, 124, 124, 112, 124, 124, 136, 124, 144, 120, 93, 82, 121, 92, 128, 140, 164, 124, 156, 140, 172, 164, 184, 164, 184, 120, 124, 112, 164, 124, 184, 164, 184, 120, 136, 124, 184, 120, 144
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length@Flatten[Permutations/@IntegerPartitions[n,5,Select[Range@n,IntegerQ@Log2@#&]],1],{n,0,60}] (* Giorgos Kalogeropoulos, Sep 13 2021 *)

A347787 Number of compositions (ordered partitions) of n into at most 6 powers of 2.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 30, 48, 68, 94, 118, 140, 168, 202, 224, 258, 292, 302, 302, 336, 352, 370, 424, 470, 472, 490, 504, 532, 544, 584, 600, 618, 532, 526, 542, 544, 536, 674, 664, 666, 656, 754, 704, 820, 824, 904, 840, 830, 712, 794, 744, 820, 824, 984
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length@Flatten[Permutations/@IntegerPartitions[n,6,Select[Range@n,IntegerQ@Log2@#&]],1],{n,0,54}] (* Giorgos Kalogeropoulos, Sep 13 2021 *)

A050379 Number of ordered factorizations of n into members of A050376.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 5, 2, 2, 1, 10, 2, 2, 3, 5, 1, 6, 1, 10, 2, 2, 2, 14, 1, 2, 2, 10, 1, 6, 1, 5, 5, 2, 1, 22, 2, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 18, 1, 2, 5, 18, 2, 6, 1, 5, 2, 6, 1, 32, 1, 2, 5, 5, 2, 6, 1, 22, 6, 2, 1, 18, 2, 2, 2, 10, 1, 18, 2, 5, 2, 2, 2
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).

Crossrefs

Programs

  • Maple
    read(transforms) :
    L := [1] :
    for n from 2 to 100  do
        if isA050376(n) then
            L := [op(L),-1] ;
        else
            L := [op(L),0] ;
        end if;
    end do :
    a050379 := DIRICHLETi(L) ; # R. J. Mathar, May 26 2017
  • PARI
    A064547(n) = {my(f = factor(n)[, 2]); sum(k=1, #f, hammingweight(f[k])); } \\ Michel Marcus, Feb 10 2016
    isA050376(n) = ((1==omega(n)) && (1==A064547(n))); \\ Checking that omega(n) is 1 is just an optimization here.
    A050379(n) = if(1==n,n,sumdiv(n,d,if(dA050376(n/d)*A050379(d),0))); \\ Antti Karttunen, Oct 20 2017

Formula

Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of A050376.
a(p^k) = A023359(k), for any prime p.
a(A002110(n)) = A000142(n) = n!.
a(n) = A050380(A101296(n)). - R. J. Mathar, May 26 2017

A280200 Expansion of 1/(1 - Sum_{k>=2} floor(1/omega(2*k-1))*x^(2*k-1)), where omega() is the number of distinct prime factors (A001221).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 16, 21, 26, 37, 47, 61, 84, 108, 143, 191, 249, 331, 437, 575, 763, 1004, 1326, 1754, 2311, 3055, 4036, 5323, 7033, 9288, 12257, 16193, 21379, 28223, 37278, 49212, 64984, 85815, 113297, 149614, 197551, 260839, 344439, 454795, 600517, 792958, 1047023, 1382519, 1825533, 2410456, 3182845
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2016

Keywords

Comments

Number of compositions (ordered partitions) into odd prime powers (1 excluded).

Examples

			a(10) = 3 because we have [7, 3], [5, 5] and [3, 7].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[1/(1 - Sum[Floor[1/PrimeNu[2 k - 1]] x^(2 k - 1), {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=2} floor(1/omega(2*k-1))*x^(2*k-1)).

A281811 Expansion of Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2.

Original entry on oeis.org

1, 3, 7, 16, 34, 71, 143, 286, 562, 1096, 2114, 4054, 7720, 14631, 27591, 51834, 97018, 181030, 336810, 625062, 1157288, 2138200, 3942858, 7257830, 13338024, 24474978, 44848232, 82073852, 150016328, 273893503, 499534495, 910161570, 1656786466, 3013237398, 5475710770, 9942780954, 18040712384, 32711070838
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into powers of 2 (A000079).

Examples

			a(4) = 16 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 1 + 2 + 3 + 3 + 3 + 4 = 16.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+[0, p[1]])(b(n-2^j)), j=0..ilog2(n)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=1..55);  # Alois P. Heinz, Aug 07 2019
  • Mathematica
    nmax = 38; Rest[CoefficientList[Series[Sum[x^2^i, {i, 0, nmax}]/(1 - Sum[x^2^j, {j, 0, nmax}])^2, {x, 0, nmax}], x]]
    nmax = 40; Rest[CoefficientList[Series[Sum[x^(2^i), {i, 0, Floor[Log[nmax]/Log[2]] + 1}]/(1 - Sum[x^(2^j), {j, 0, Floor[Log[nmax]/Log[2]] + 1}])^2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 17 2017 *)

Formula

G.f.: Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2.
a(n) ~ c * n / r^n, where r = 0.566123792684559918241681653033264449147... is the root of the equation Sum_{j>=0} r^(2^j) = 1 and c = 0.34432689951558638915900387175922521737229978512101795819134... . - Vaclav Kotesovec, Feb 17 2017

A382187 Expansion of 1/(1 - 4 * Sum_{k>=0} x^(2^k))^(1/2).

Original entry on oeis.org

1, 2, 8, 32, 138, 604, 2696, 12176, 55512, 254888, 1177064, 5461040, 25435296, 118856272, 556962928, 2616287392, 12315914698, 58084552572, 274395134600, 1298187523792, 6150051540460, 29170558879736, 138512004786624, 658362443599296, 3132140164624680
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/(1/A(x^2)^2 - 4*x)^(1/2).

A382188 Expansion of 1/(1 - 9 * Sum_{k>=0} x^(2^k))^(1/3).

Original entry on oeis.org

1, 3, 21, 162, 1344, 11565, 102033, 916002, 8330331, 76515363, 708379137, 6600436794, 61829064882, 581783753232, 5495344743924, 52079440119336, 494985533135250, 4716537209764020, 45043670723519952, 431041661857081656, 4132290587464466820, 39680088682182010749
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/(1/A(x^2)^3 - 9*x)^(1/3).

A109696 Decimal expansion of root of 1 - Sum_{n>=0} 1/x^(2^n).

Original entry on oeis.org

1, 7, 6, 6, 3, 9, 8, 1, 1, 4, 5, 5, 0, 1, 7, 3, 5, 9, 7, 2, 2, 8, 4, 8, 8, 3, 9, 2, 4, 4, 0, 0, 9, 9, 7, 3, 0, 2, 3, 2, 0, 6, 9, 2, 8, 7, 9, 5, 7, 0, 7, 2, 7, 7, 5, 2, 7, 8, 2, 8, 5, 0, 7, 4, 4, 0, 8, 3, 8, 4, 3, 4, 0, 5, 2, 4, 9, 8, 8, 3, 1, 1, 7, 9, 0, 4, 0, 6, 9, 7, 2, 7, 2, 0, 4, 5, 7, 9, 5, 8, 2, 4, 7, 9, 9
Offset: 1

Views

Author

Keywords

Examples

			1.766398114550173597228488392440099730232069287957072775...
		

Crossrefs

This is the limit ratio between consecutive terms of A023359.

Programs

  • Mathematica
    RealDigits[ FindRoot[1 - Sum[1/(x^(2^n)), {n, 0, 8}] == 0, {x, 1.7}, WorkingPrecision -> 128][[1, 2]], 10, 128][[1]] (* Robert G. Wilson v, Aug 08 2005 *)
  • PARI
    solve(x=1,2,1-sum(k=0,8,1./x^(2^k)))
Previous Showing 21-30 of 39 results. Next