A104796
Triangle read by rows: T(n,k) = (n+1-k)*Fibonacci(n+2-k), for n>=1, 1<=k<=n.
Original entry on oeis.org
1, 4, 1, 9, 4, 1, 20, 9, 4, 1, 40, 20, 9, 4, 1, 78, 40, 20, 9, 4, 1, 147, 78, 40, 20, 9, 4, 1, 272, 147, 78, 40, 20, 9, 4, 1, 495, 272, 147, 78, 40, 20, 9, 4, 1, 890, 495, 272, 147, 78, 40, 20, 9, 4, 1, 1584, 890, 495, 272, 147, 78, 40, 20, 9, 4, 1, 2796, 1584, 890, 495, 272
Offset: 1
Rows 1,2,3,4,5,6 and columns 1,2,3,4,5,6 of the triangle are:
1;
4, 1;
9, 4, 1;
20, 9, 4, 1;
40, 20, 9, 4, 1;
78, 40, 20, 9, 4, 1;
...
Row 3 for example is 3*F(4), 2*F(3), 1*F(2) = 3*3, 2*2, 1*1 = 9, 4, 1.
Row 4 is 4*F(5), 3*F(4), 2*F(3), 1*F(2) = 4*5, 3*3, 2*2, 1*1 = 20, 9, 4, 1.
Reading the rows backwards gives an initial segment of the terms of A023607 (but without the initial zero).
-
Table[(n+1-k)Fibonacci[n+2-k],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Sep 24 2020 *)
Module[{nn=20,c},c=LinearRecurrence[{2,1,-2,-1},{1,4,9,20},nn];Table[ Reverse[ Take[c,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Sep 25 2020 *)
A182001
Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).
Original entry on oeis.org
1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0
Triangle begins :
1;
3, 1;
4, 4, 1;
7, 9, 5, 1;
11, 20, 15, 6, 1;
18, 40, 40, 22, 7, 1;
29, 78, 95, 68, 30, 8, 1;
47, 147, 213, 185, 105, 39, 9, 1;
76, 272, 455, 466, 320, 152, 49, 10, 1;
123, 495, 940, 1106, 891, 511, 210, 60, 11, 1;
199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 4, 4, 1;
0, 7, 9, 5, 1;
0, 11, 20, 15, 6, 1;
0, 18, 40, 40, 22, 7, 1;
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return Lucas(n+1);
else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=n then 1
elif k=0 then fibonacci(n+2) + fibonacci(n)
else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
-
With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
a(29) corrected by and a(55)-a(65) from
Georg Fischer, Feb 18 2020
A093835
n*Jacobsthal(n).
Original entry on oeis.org
0, 1, 2, 9, 20, 55, 126, 301, 680, 1539, 3410, 7513, 16380, 35503, 76454, 163845, 349520, 742747, 1572858, 3320497, 6990500, 14680071, 30758222, 64312669, 134217720, 279620275, 581610146, 1207959561, 2505397580, 5189752159
Offset: 0
-
LinearRecurrence[{2,3,-4,-4},{0,1,2,9},30] (* Harvey P. Dale, Jun 17 2017 *)
A123194
a(n) = (n+1)*Fibonacci(n+2) + 3.
Original entry on oeis.org
4, 7, 12, 23, 43, 81, 150, 275, 498, 893, 1587, 2799, 4904, 8543, 14808, 25555, 43931, 75261, 128538, 218923, 371934, 630457, 1066467, 1800603, 3034828, 5106871, 8580900, 14398415, 24129163, 40388073, 67527582, 112786499, 188195274, 313733813, 522562323
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Philip Matchett Wood, A bijective proof of f_{n+4}+f_1+2f_2+...+nf_n=(n+1)f_{n+2}+3, Integers 6 (2006), A2, 4 pp.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
-
[(n+1)*Fibonacci(n+2) + 3: n in [0..40]]; // Vincenzo Librandi, Feb 25 2017
-
Table[(n + 1) Fibonacci[n+2] + 3, {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2017 *)
LinearRecurrence[{3,-1,-3,1,1},{4,7,12,23,43},40] (* Harvey P. Dale, Jan 12 2018 *)
-
a(n) = (n+1)*fibonacci(n+2) + 3; \\ Michel Marcus, Feb 25 2017
-
Vec((4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2) + O(x^50)) \\ Colin Barker, Feb 25 2017
Original entry on oeis.org
0, 1, 4, 8, 17, 35, 66, 124, 229, 414, 742, 1318, 2320, 4059, 7062, 12224, 21071, 36185, 61930, 105678, 179847, 305326, 517212, 874380, 1475472, 2485573, 4180648, 7021544, 11777117, 19728911, 33011202
Offset: 0
A179023
a(n) = n(F(n+2) - 1) where F(n) is defined by A000045.
Original entry on oeis.org
0, 1, 4, 12, 28, 60, 120, 231, 432, 792, 1430, 2552, 4512, 7917, 13804, 23940, 41328, 71060, 121752, 207955, 354200, 601776, 1020074, 1725552, 2913408, 4910425, 8263060, 13884156, 23297092, 39041772, 65349240, 109261887, 182492352
Offset: 0
A181974
Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
Offset: 0
Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
Original entry on oeis.org
1, 3, 5, 12, 23, 43, 81, 148, 266, 476, 842, 1478, 2581, 4481, 7743, 13328, 22857, 39073, 66605, 113242, 192084, 325128, 549252, 926220, 1559353, 2621295, 4400249, 7376868, 12352043, 20659159, 34516377
Offset: 0
A378943
Numbers obtained from the tribonacci triangle formed by the number of connection points in the paths obtained by Pell walk on the square grid.
Original entry on oeis.org
2, 3, 7, 13, 25, 46, 86, 158, 292, 537, 989, 1819, 3347, 6156, 11324, 20828, 38310, 70463, 129603, 238377, 438445, 806426, 1483250, 2728122, 5017800, 9229173, 16975097, 31222071, 57426343, 105623512, 194271928, 357321784, 657217226, 1208810939, 2223349951, 4089378117
Offset: 1
For n = 4 a(4) = a(3) + a(2) + a(1) + 1 = 2 + 3 + 7 + 1 = 13.
For n = 5 a(5) = a(4) + a(3) + a(2) + 2 = 3 + 7 + 13 + 2 = 25.
- T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer Science-Business Media New York, 2014, 227-253.
- E. Namlı, Tribonacci ve lucas sayılarının üreteç fonksiyonları yardımıyla oluşan bazı özdeşlikler, Master's thesis, Bursa Uludag University (Turkey), 2020, 2-16.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1,-1).
-
LinearRecurrence[{1, 2, 0, -1, -1}, {2, 3, 7, 13, 25}, 36] (* Hugo Pfoertner, Jan 09 2025 *)
-
def a(n, memo={}):
if n == 1:
return 2
elif n == 2:
return 3
elif n == 3:
return 7
if n in memo:
return memo[n]
if n % 2 == 1:
memo[n] = a(n - 3, memo) + a(n - 2, memo) + a(n - 1, memo) + 2
else:
memo[n] = a(n - 3, memo) + a(n - 2, memo) + a(n - 1, memo) + 1
return memo[n]
sequence = [a(n) for n in range(1, n)]
print(sequence)
Comments