cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A104796 Triangle read by rows: T(n,k) = (n+1-k)*Fibonacci(n+2-k), for n>=1, 1<=k<=n.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 20, 9, 4, 1, 40, 20, 9, 4, 1, 78, 40, 20, 9, 4, 1, 147, 78, 40, 20, 9, 4, 1, 272, 147, 78, 40, 20, 9, 4, 1, 495, 272, 147, 78, 40, 20, 9, 4, 1, 890, 495, 272, 147, 78, 40, 20, 9, 4, 1, 1584, 890, 495, 272, 147, 78, 40, 20, 9, 4, 1, 2796, 1584, 890, 495, 272
Offset: 1

Views

Author

Gary W. Adamson, Mar 26 2005

Keywords

Comments

The first column is A023607 (without the leading zero).

Examples

			Rows 1,2,3,4,5,6 and columns 1,2,3,4,5,6 of the triangle are:
1;
4, 1;
9, 4, 1;
20, 9, 4, 1;
40, 20, 9, 4, 1;
78, 40, 20, 9, 4, 1;
...
Row 3 for example is 3*F(4), 2*F(3), 1*F(2) = 3*3, 2*2, 1*1 = 9, 4, 1.
Row 4 is 4*F(5), 3*F(4), 2*F(3), 1*F(2) = 4*5, 3*3, 2*2, 1*1 = 20, 9, 4, 1.
Reading the rows backwards gives an initial segment of the terms of A023607 (but without the initial zero).
		

Crossrefs

Row sums are in A094584.

Programs

  • Mathematica
    Table[(n+1-k)Fibonacci[n+2-k],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Sep 24 2020 *)
    Module[{nn=20,c},c=LinearRecurrence[{2,1,-2,-1},{1,4,9,20},nn];Table[ Reverse[ Take[c,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Sep 25 2020 *)

Extensions

Edited by Ralf Stephan, Apr 05 2009
Entry revised by N. J. A. Sloane, Sep 23 2020

A182001 Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 05 2012

Keywords

Comments

Subtriangle of the triangle given by (0, 3, -5/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Antidiagonal sums are A001045(n+2).

Examples

			Triangle begins :
    1;
    3,   1;
    4,   4,    1;
    7,   9,    5,    1;
   11,  20,   15,    6,    1;
   18,  40,   40,   22,    7,    1;
   29,  78,   95,   68,   30,    8,   1;
   47, 147,  213,  185,  105,   39,   9,   1;
   76, 272,  455,  466,  320,  152,  49,  10, 1;
  123, 495,  940, 1106,  891,  511, 210,  60, 11,  1;
  199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
  1;
  0,  1;
  0,  3,  1;
  0,  4,  4,  1;
  0,  7,  9,  5,  1;
  0, 11, 20, 15,  6, 1;
  0, 18, 40, 40, 22, 7, 1;
		

Crossrefs

Cf. Columns : A000032, A023607, A152881

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return Lucas(n+1);
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=n then 1
        elif k=0 then fibonacci(n+2) + fibonacci(n)
        else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
    T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)

Formula

G.f.: (1+2*x)/(1-x-y*x-x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = 3, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..nn} T(n,k)*x^k = A000034(n), A000032(n+1), A048654(n), A108300(n), A048875(n) for x = -1, 0, 1, 2, 3 respectively.

Extensions

a(29) corrected by and a(55)-a(65) from Georg Fischer, Feb 18 2020

A093835 n*Jacobsthal(n).

Original entry on oeis.org

0, 1, 2, 9, 20, 55, 126, 301, 680, 1539, 3410, 7513, 16380, 35503, 76454, 163845, 349520, 742747, 1572858, 3320497, 6990500, 14680071, 30758222, 64312669, 134217720, 279620275, 581610146, 1207959561, 2505397580, 5189752159
Offset: 0

Views

Author

Paul Barry, Apr 20 2004

Keywords

Comments

Convolution of Jacobsthal numbers A001045 and modified Jacobsthal-Lucas numbers (in A014551, change the leading 2 to a 1).

Crossrefs

Cf. A023607.

Programs

  • Mathematica
    LinearRecurrence[{2,3,-4,-4},{0,1,2,9},30] (* Harvey P. Dale, Jun 17 2017 *)

Formula

G.f.: x(1+2x^2)/(1-x-2x^2)^2; a(n)=n2^n/3-n(-1)^n/3.
a(n) = n*A001045(n). - R. J. Mathar, May 07 2019

A123194 a(n) = (n+1)*Fibonacci(n+2) + 3.

Original entry on oeis.org

4, 7, 12, 23, 43, 81, 150, 275, 498, 893, 1587, 2799, 4904, 8543, 14808, 25555, 43931, 75261, 128538, 218923, 371934, 630457, 1066467, 1800603, 3034828, 5106871, 8580900, 14398415, 24129163, 40388073, 67527582, 112786499, 188195274, 313733813, 522562323
Offset: 0

Views

Author

N. J. A. Sloane, Oct 04 2006

Keywords

Crossrefs

Cf. A023607.

Programs

  • Magma
    [(n+1)*Fibonacci(n+2) + 3: n in [0..40]]; // Vincenzo Librandi, Feb 25 2017
  • Mathematica
    Table[(n + 1) Fibonacci[n+2] + 3, {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2017 *)
    LinearRecurrence[{3,-1,-3,1,1},{4,7,12,23,43},40] (* Harvey P. Dale, Jan 12 2018 *)
  • PARI
    a(n) = (n+1)*fibonacci(n+2) + 3; \\ Michel Marcus, Feb 25 2017
    
  • PARI
    Vec((4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2) + O(x^50)) \\ Colin Barker, Feb 25 2017
    

Formula

G.f.: (4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2). - Ilya Gutkovskiy, Feb 24 2017
From Colin Barker, Feb 25 2017: (Start)
a(n) = 3 - 2^(-1-n)*((1-sqrt(5))^n*(-5+3*sqrt(5)) - (1+sqrt(5))^n*(5+3*sqrt(5)))/5*(1+n).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5) for n>4.
(End)

A215108 a(n) = A215082(2*n).

Original entry on oeis.org

0, 1, 4, 8, 17, 35, 66, 124, 229, 414, 742, 1318, 2320, 4059, 7062, 12224, 21071, 36185, 61930, 105678, 179847, 305326, 517212, 874380, 1475472, 2485573, 4180648, 7021544, 11777117, 19728911, 33011202
Offset: 0

Views

Author

Philippe Deléham, Aug 03 2012

Keywords

Crossrefs

Formula

a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 2*a(n-4) - 3*a(n-5) -a(n-6), a(0) = 0, a(1) = 1, a(2) = 4, a(3) = 8, a(4) = 17, a(5) = 35 .
G.f.: x*(x+1)*(2x+1)/((x^2+x+1)*(x^2+x-1)^2)

A179023 a(n) = n(F(n+2) - 1) where F(n) is defined by A000045.

Original entry on oeis.org

0, 1, 4, 12, 28, 60, 120, 231, 432, 792, 1430, 2552, 4512, 7917, 13804, 23940, 41328, 71060, 121752, 207955, 354200, 601776, 1020074, 1725552, 2913408, 4910425, 8263060, 13884156, 23297092, 39041772, 65349240, 109261887, 182492352
Offset: 0

Views

Author

K.V.Iyer, Jun 25 2010

Keywords

Comments

Let the 'Fibonacci weighted stars' T(i)'s be defined as: T(1) is an edge with one vertex as a distinguished vertex; the weight on the edge is taken to be F(1); for n>1, T(n) is formed by taking a copy of T(n-1) and attaching an edge to its distinguished vertex; the weight on the new edge is taken to be F(n). The sum of the weighted distances over all pairs of vertices in T(n) is this sequence.

Programs

  • Mathematica
    f[n_] := n(Fibonacci[n + 2] - 1); Array[f, 33, 0] (* Robert G. Wilson v, Jun 27 2010 *)

Formula

a(0)=0, a(1)=1 and for n>1, a(n) = a(n-1) + F(n+1) +nF(n) -1.
a(n)= +4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6). = -n + A023607(n+1) - A000045(n+2). G.f.: -x*(-1+2*x^3) / ( (x-1)^2*(x^2+x-1)^2 ). - R. J. Mathar, Sep 15 2010

Extensions

More terms from Robert G. Wilson v, Jun 27 2010

A181974 Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 06 2012

Keywords

Examples

			Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
		

Crossrefs

Formula

G.f.: (1+y*x+2*y*x^2)/(1-x-x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 3 and T(n,k) = 0 if k<0 or if k>n.
T(n + 2k, 2k) = A037027(n + k, k).
T(n + 2k +1, 2k + 1) = A182001(n + k, k).
T(n,0) = Fibonacci(n+1).

A215109 a(n) = A215082(2*n+1).

Original entry on oeis.org

1, 3, 5, 12, 23, 43, 81, 148, 266, 476, 842, 1478, 2581, 4481, 7743, 13328, 22857, 39073, 66605, 113242, 192084, 325128, 549252, 926220, 1559353, 2621295, 4400249, 7376868, 12352043, 20659159, 34516377
Offset: 0

Views

Author

Philippe Deléham, Aug 03 2012

Keywords

Crossrefs

Formula

a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 2*a(n-4) - 3*a(n-5) - a(n-6), a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 12, a(4) = 23, a(5) = 43.
G.f.: (2*x+1)/((x^2+x+1)*(x^2+x-1)^2).

A378943 Numbers obtained from the tribonacci triangle formed by the number of connection points in the paths obtained by Pell walk on the square grid.

Original entry on oeis.org

2, 3, 7, 13, 25, 46, 86, 158, 292, 537, 989, 1819, 3347, 6156, 11324, 20828, 38310, 70463, 129603, 238377, 438445, 806426, 1483250, 2728122, 5017800, 9229173, 16975097, 31222071, 57426343, 105623512, 194271928, 357321784, 657217226, 1208810939, 2223349951, 4089378117
Offset: 1

Views

Author

Keywords

Comments

The study was inspired by the stepping system discussed in the study titled Pell Walks by Thomas Koshy (2014). In the study, the points formed in this walk are called connected points. There is a direct connection between the Pell-Lucas number sequence and the tribonacci number sequence.
The connection points obtained from Thomas Koshy (2014) were examined on the Pascal triangle. The intermediate sequences of this A number sequence were examined. The counting numbers were extracted from the sequence. The resulting new number sequence is 1,1,4,9,20,40,79,150,283,523... This is called the D number sequence. It is similar to A023607, which is a convolution of Fibonacci and Lucas numbers.

Examples

			For n = 4 a(4) = a(3) + a(2) + a(1) + 1 = 2 + 3 + 7 + 1 = 13.
For n = 5 a(5) = a(4) + a(3) + a(2) + 2 = 3 + 7 + 13 + 2 = 25.
		

References

  • T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer Science-Business Media New York, 2014, 227-253.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 2, 0, -1, -1}, {2, 3, 7, 13, 25}, 36] (* Hugo Pfoertner, Jan 09 2025 *)
  • Python
    def a(n, memo={}):
        if n == 1:
            return 2
        elif n == 2:
            return 3
        elif n == 3:
            return 7
        if n in memo:
            return memo[n]
        if n % 2 == 1:
            memo[n] = a(n - 3, memo) + a(n - 2, memo) + a(n - 1, memo) + 2
        else:
            memo[n] = a(n - 3, memo) + a(n - 2, memo) + a(n - 1, memo) + 1
        return memo[n]
    sequence = [a(n) for n in range(1, n)]
    print(sequence)

Formula

a(1)=2, a(2)=3, a(3)=7, and a(n+3) = a(n)+a(n+1)+a(n+2)+2 if n is odd, a(n+3) = a(n)+a(n+1)+ a(n+2)+1 if n is even.

Extensions

Edited - N. J. A. Sloane, Jan 23 2025
Previous Showing 11-19 of 19 results.