cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A057229 a(n) = a*b = x*y with (a-b) = (x+y) = A020882(n) (a>b, a>0, b>0, x>0, y>0), gcd(a, b) = gcd(x, y) = 1.

Original entry on oeis.org

6, 30, 60, 84, 210, 210, 180, 630, 330, 504, 924, 1320, 546, 1386, 1560, 2340, 990, 2730, 840, 2574, 4620, 1224, 1716, 3570, 5610, 7140, 4290, 1710, 5016, 7956, 7980, 2730, 7854, 10374, 2310, 11970, 6630, 10920, 12540, 4080, 3036, 11856, 8970
Offset: 0

Views

Author

Naohiro Nomoto, Sep 19 2000

Keywords

Comments

The quadratics in X, X^2 - S*X -+ P, where S=A020882(n), P=A057229(n) are each factorizable into two factors, all four being distinct: X^2 - S*X - P = (X - a)*(X + b). X^2 - S*X + P = (X - x)*(X - y). - Lekraj Beedassy, Apr 30 2004
Areas of primitive Pythagorean triangles sorted on hypotenuse A020882, then on perimeter A093507. - Lekraj Beedassy, Aug 18 2006

Examples

			E.g. a(1)=6=6*1=3*2, (6-1)=(3+2)=5=A020882(1), gcd(6,1)=gcd(3,2)=1
		

Crossrefs

A228874 a(n) = L(n) * L(n+1) * L(n+2) * L(n+3), the product of four consecutive Lucas numbers, A000032.

Original entry on oeis.org

24, 84, 924, 5544, 40194, 269874, 1864584, 12741324, 87431844, 599001144, 4106310474, 28143249834, 192901471224, 1322153872644, 9062210132844, 62113226746824, 425730613530834, 2918000448971874, 20000274149827944, 137083914357154044, 939587137457703924
Offset: 0

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.6 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if Lucas(n) and Lucas(n+1) have opposite parity. Every third number, starting at a(1) = 84, is not primitive Pythagorean.
Since a(n) = L(n+1)*L(n+2)*(L(n+2)^2-L(n+1)^2), these numbers are in A073120, - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000032 (Lucas numbers), A228873 (similar sequence for Fibonacci numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Maple
    L:= n -> 2*combinat:-fibonacci(n+1)-combinat:-fibonacci(n):
    seq(mul(L(n+i),i=0..3),n=0..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[LucasL[n] LucasL[n+1] LucasL[n+2] LucasL[n+3], {n, 0, 25}]
    Times@@@Partition[LucasL[Range[0,30]],4,1] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    Vec(6*(x^4-4*x^3-24*x^2+6*x-4)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^100)) \\ Colin Barker, Oct 29 2013

Formula

G.f.: 6*(x^4-4*x^3-24*x^2+6*x-4) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Oct 29 2013
From Robert Israel, Apr 06 2015: (Start)
a(n+5) = 5*a(n+4) + 15*a(n+3) - 15*a(n+2) - 5*a(n+1) + a(n).
a(n) = -A228873(n+3) + 4*A228873(n+2) + 24*A228873(n+1) - 6*A228873(n) + 4*A228873(n-1) for n >= 2. (End)
Sum_{n>=0} 1/a(n) = (10 - 3*sqrt(5))/60. - Diego Rattaggi, Aug 16 2021

A094807 Numbers n such that primitive solutions for 1/n^2 = 1/x^2 + 1/y^2 exist.

Original entry on oeis.org

12, 60, 120, 168, 360, 420, 660, 1008, 1092, 1260, 1680, 1848, 1980, 2448, 2640, 2772, 3120, 3420, 3432, 4620, 4680, 5148, 5460, 6072, 7140, 7800, 8160, 8580, 9240, 9828, 10032, 11220, 11628, 12180, 13260, 14280, 14880, 15708, 15912, 15960, 17940
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2004

Keywords

Comments

Numbers n that are the product of two legs of a primitive Pythagorean triangle, that is, n = 2xy(x^2-y^2) where x and y are two relatively prime positive integers of different parity and x is greater than y.
Numbers n which are the length of the altitude on the hypotenuse of a Pythagorean triangle and the smallest in its similarity class.

Examples

			12 is in the sequence because we have 1/12^2 = 1/15^2 + 1/20^2 and gcd(12,15,20)=1.
		

References

  • E. Bahier, Recherche Methodique et Proprietes des Triangles Rectangles en Nombres Entiers, Hermann, Paris, 1916. p. 68.

Formula

Equals 2*A024365(n).

Extensions

Comments provided by Michael Somos, Oct 01 2004

A101439 Areas of primitive Pythagorean triangles which are palindromes.

Original entry on oeis.org

6, 63336, 474474, 666666, 4383834, 43177134, 460962269064, 60471399317406, 60490233209406, 643869171968346, 6708875775788076, 44703479297430744, 608857707707758806, 44523865177156832544, 683665820959028566386
Offset: 1

Views

Author

Zak Seidov, Jan 18 2005

Keywords

Comments

Other parts of the n-th triangle are {m,n}, {a,b,c}:
a(1): {1,2}, {3,4,5};
a(2): {8,21}, {377,336,505};
a(3): {1,78}, {6083,156,6085};
a(4): {26,37}, {693,1924,2045};
a(5): {49,62}, {1443,6076,6245};
a(6): {11,158}, {24843,3476,25085};
a(7): {2376,2393}, {81073,11371536,11371825};
a(8): {4569,4858}, {2724403,44392404,44475925};
a(9): {2974,3773}, {5390853,22441804,23080205};
a(10): {5402,6829}, {17453637,73780516,75816845};
a(11): {121,38132}, {1454034783,9227944,1454064065};
a(12): {28407,29336}, {53643247,1666695504,1667558545};
a(13): {16593,35986}, {1019664547,1194231396,1570319845};
a(14): {3168,241339}, {58234476697,1529123904,58254549145};
a(15): {160034,213573}, {20002545173,68357882964,71224307485}.

Examples

			666666 is a member as it is a palindromic number and is the area of a primitive Pythagorean triangle with legs a=693 & b=1924 and hypotenuse c=2045.
		

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ GCD[m, n] == 1, a = IntegerDigits[m*n^3 - n*m^3]; If[ Reverse[a] == a, lst = Sort[ AppendTo[ lst, a]]; Print[{n^2 - m^2, 2m*n, n^2 + m^2, m*n^3 - n*m^3}]]], {n, 55000}, {m, If[ EvenQ[n], 1, 2], n - 1, 2}]; lst (* Robert G. Wilson v, Jan 25 2005 *)
  • PARI
    for(n=2,oo, is_A024365(a=A002113(n)) && print1(a", ")) \\ Could be made to a function returning, e.g., the n-th row := the n-digit terms. - M. F. Hasler, Jun 06 2024

Formula

Intersection of A002113 and A024365. - M. F. Hasler, Jun 06 2024

Extensions

a(8) & a(10) - a(13) from Robert G. Wilson v, Jan 25 2005
a(14) and a(15) from Ray Chandler, Feb 10 2013

A227201 Areas of Pythagorean triangles with areas that use all ten decimal digits exactly once.

Original entry on oeis.org

1072493856, 1075948326, 1235976840, 1239084756, 1253684790, 1253894670, 1263984750, 1265738940, 1270953864, 1279635840, 1287349560, 1287463950, 1295738640, 1297836540, 1298647350, 1328405976, 1329754860, 1346589720, 1357962840, 1376925480, 1382974560
Offset: 1

Views

Author

Charles Kluepfel, Sep 18 2013

Keywords

Comments

There are 515 members to the set.

Crossrefs

Cf. A024365.

Programs

  • Mathematica
    mx = 10^10; mn = mx/10; nn = Ceiling[mx^(1/3)]; If[OddQ[nn], nn + 1]; t = Union[Flatten[Table[If[GCD[u, v] == 1 && Mod[u, 2] + Mod[v, 2] == 1, u v (u^2 - v^2), 0], {u, nn}, {v, u - 1}]]]; t2 = Select[Rest[t], # < mx &]; t3 = {}; Do[num0 = Ceiling[Sqrt[mn/n]]; num1 = Floor[Sqrt[mx/n]]; Do[num = i^2*n; If[Length[Union[IntegerDigits[num]]] == 10, AppendTo[t3, num]], {i, num0, num1}], {n, t2}]; t3 = Union[t3] (* T. D. Noe, Sep 20 2013 *)

A258151 Areas of primitive Pythagorean triangles divided by 6, in increasing order without multiple entries.

Original entry on oeis.org

1, 5, 10, 14, 30, 35, 55, 84, 91, 105, 140, 154, 165, 204, 220, 231, 260, 285, 286, 385, 390, 429, 455, 506, 595, 650, 680, 715, 770, 819, 836, 935, 969, 1015, 1105, 1190, 1240, 1309, 1326, 1330, 1495, 1496, 1615, 1729, 1771, 1785, 1820, 1925
Offset: 1

Views

Author

Wolfdieter Lang, Jun 14 2015

Keywords

Comments

See A020885 for this sequence with multiplicities. See A024365 for the areas with multiplicities.
This sequence gives also Fibonacci's congruous numbers divided by 24 without multiple entries. See A258150.

Examples

			See A020885.
		

Crossrefs

Previous Showing 11-16 of 16 results.