cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A153275 Numbers n such that 10*n+1 is not prime.

Original entry on oeis.org

0, 2, 5, 8, 9, 11, 12, 14, 16, 17, 20, 22, 23, 26, 29, 30, 32, 34, 35, 36, 37, 38, 39, 41, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 100, 101, 104, 107, 108, 110
Offset: 1

Views

Author

Vincenzo Librandi, Dec 22 2008

Keywords

Comments

Multiplied by 2 we have 4,10,16,18,... which is the set of even terms of A153329. - R. J. Mathar, Jan 23 2009

Examples

			Distribution of the terms in the following triangular array:
*;
*,*;
2,*,*;
*,*,*,8;
*,*,*,*,12;
*,*,9,*,*,*;
*,*,*,*,*,*,*;
5,*,*,*,*,22,*,*;
*,*,*,17,*,*,*,*,36;
*,*,*,*,23,*,*,*,*,44;
*,*,16,*,*,*,*,39,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(10*n + 1)]; // Vincenzo Librandi, Jan 12 2013
  • Maple
    q:= n-> not isprime(10*n+1):
    select(q, [$0..120])[];  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Select[Range[0, 200], !PrimeQ[10*# + 1]&] (* Vincenzo Librandi, Jan 12 2013 *)

Formula

a(n) = (A053178(n)-1)/10. - R. J. Mathar, Oct 30 2009

Extensions

63 replaced by 53 by R. J. Mathar, Jan 23 2009
0 added by Arkadiusz Wesolowski, Aug 03 2011

A343717 a(n) is the smallest number that yields a prime when appended to n!.

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 7, 11, 29, 17, 43, 29, 13, 47, 19, 73, 37, 19, 41, 103, 41, 31, 43, 1, 113, 31, 37, 59, 41, 53, 41, 47, 1, 41, 149, 37, 53, 73, 337, 1, 103, 151, 293, 47, 107, 509, 127, 71, 167, 197, 167, 149, 67, 163, 139, 251, 59, 107, 241, 331, 269, 1, 149
Offset: 0

Views

Author

Jon E. Schoenfield, May 17 2021

Keywords

Comments

Appending to n! any number k <= n yields a multiple of k; that multiple cannot be prime except at k=1, so, for every n, a(n)=1 or a(n) > n.
a(n) = 1 iff n = 0 or n is in A024912.
See A068695 for a proof that a(n) always exists. - Felix Fröhlich, May 18 2021
If a(n) is composite, then a(n) > 2n. - Michael S. Branicky, May 18 2021

Examples

			n=1: 1! = 1; appending a 1 yields 11, a prime, so a(1)=1.
n=2: 2! = 2; appending a 1 yields 21 = 3*7, and appending a 2 yields 22 = 2*11, but appending a 3 yields 23 (a prime), so a(2)=3.
n=19: 19! = 121645100408832000; appending any number < 103 yields a composite, but 121645100408832000103 is a prime, so a(19)=103.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k, t; t:= n!;
          for k while not isprime(parse(cat(t, k))) do od; k
        end:
    seq(a(n), n=0..62);  # Alois P. Heinz, May 17 2021
  • Mathematica
    Array[Block[{m = #!, k = 0}, While[! PrimeQ[10^If[k == 0, 1, IntegerLength[k]]*m + k], k++]; k] &, 62] (* Michael De Vlieger, May 17 2021 *)
    snp[n_]:=Module[{nf=n!,c=1},While[!PrimeQ[nf*10^IntegerLength[c]+c],c++];c]; Array[snp,70,0] (* Harvey P. Dale, Oct 17 2024 *)
  • PARI
    for(n=0,62,my(f=digits(n!));forstep(k=1,oo,2,my(p=fromdigits(concat(f,digits(k))));if(ispseudoprime(p),print1(k,", ");break))) \\ Hugo Pfoertner, May 18 2021
  • Python
    # see link for faster program producing b-file
    from sympy import factorial, isprime
    def a(n):
      start = str(factorial(n))
      end = 1
      while not isprime(int(start + str(end))): end += 2
      return end
    print([a(n) for n in range(63)]) # Michael S. Branicky, May 17 2021
    

Formula

a(n) = A068695(n!) = A068695(A000142(n)).

A102249 Numbers k such that k1111 is prime.

Original entry on oeis.org

10, 13, 31, 36, 51, 57, 61, 69, 72, 78, 79, 90, 91, 97, 117, 120, 127, 129, 135, 138, 153, 156, 166, 174, 183, 184, 189, 201, 205, 210, 222, 225, 226, 234, 237, 240, 241, 244, 252, 261, 265, 273, 276, 280, 285, 292, 304, 306, 309, 318, 322, 325, 327, 337, 345
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 18 2005

Keywords

Examples

			At k=10, k1111 = 101111 (prime).
At k=90, k1111 = 901111 (prime).
At k=138, k1111 = 1381111 (prime).
		

Crossrefs

Cf. A024912.

Programs

  • Mathematica
    Select[ Range[ 350], PrimeQ[ FromDigits[ Flatten[ IntegerDigits /@ { #, 1, 1, 1, 1}]]] &] (* Robert G. Wilson v, Feb 21 2005 *)
    Select[Range[400],PrimeQ[#*10^4+1111]&] (* Harvey P. Dale, Jul 14 2019 *)

Extensions

More terms from Robert G. Wilson v, Feb 21 2005

A078656 a(n) = prime(k) where k = n-th prime congruent to 1 mod 10.

Original entry on oeis.org

31, 127, 179, 283, 353, 547, 739, 877, 1087, 1153, 1297, 1523, 1597, 1741, 1823, 2063, 2221, 2749, 2909, 3001, 3259, 3517, 3733, 3911, 4153, 4421, 4663, 4759, 4943, 5189, 5281, 5701, 5801, 6229, 6311, 6841, 7109
Offset: 1

Views

Author

Cino Hilliard, Dec 14 2002

Keywords

Crossrefs

Cf. A024912.

Programs

  • Mathematica
    Prime[10Select[Range[110], PrimeQ[10# + 1] &] + 1]
    Prime[#]&/@Select[Prime[Range[200]],NumberDigit[#,0]==1&] (* Requires Mathematica version 12 or later *) (* Harvey P. Dale, May 31 2021 *)
  • PARI
    pip(n,m,r) = {sr=0; forprime(x=3,n, if(x%m == r,v=prime(x); sr+=1.0/v; print1(v" "); ) ); print(); print("m="m" r="r" sr="sr); }

Extensions

Edited by Robert G. Wilson v, Dec 17 2002

A089767 Squares which when concatenated with a 1 gives prime.

Original entry on oeis.org

1, 4, 25, 49, 64, 81, 225, 400, 676, 784, 900, 1089, 1225, 1369, 1600, 1681, 2209, 2304, 3249, 3364, 4096, 5041, 6889, 7225, 7396, 8100, 8281, 8649, 9801, 10816, 11025, 11236, 12100, 12544, 12769, 13924, 15876, 16384, 17424, 19881, 21609, 21904
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2003

Keywords

Comments

Squares n such that 10*n+1 is prime. - Robert Israel, Dec 09 2017

Examples

			41, 4001, 6761 etc. are primes.
		

Crossrefs

Intersection of A000290 and A024912.

Programs

  • MATLAB
    A = []; count = 0; i = 1; while count < 60; s = i*i; if isprime(10*s + 1) A = [A s]; count = count + 1; end; i = i + 1; end; A
  • Maple
    select(t -> isprime(10*t+1), map(`^`,[$1..300],2)); # Robert Israel, Dec 09 2017
  • Mathematica
    Select[Range[150]^2, PrimeQ[10 # + 1] &] (* Michael De Vlieger, Dec 09 2017 *)

Extensions

Corrected and extended by David Wasserman, Feb 25 2004

A102546 Numbers t such that t1 is prime and t is a multiple of 10.

Original entry on oeis.org

10, 40, 60, 70, 120, 130, 160, 180, 190, 280, 300, 330, 370, 400, 420, 480, 510, 550, 570, 580, 610, 630, 670, 700, 790, 810, 850, 900, 960, 990, 1030, 1050, 1060, 1170, 1180, 1210, 1230, 1240, 1260, 1300, 1390, 1440, 1510, 1540, 1560, 1590, 1600, 1630, 1690, 1740, 1830, 1840, 1870
Offset: 1

Views

Author

Parthasarathy Nambi, Feb 24 2005

Keywords

Examples

			If t=10, then t1 = 101 (prime).
If t=180, then t1 = 1801 (prime).
If t=420, then t1 = 4201 (prime).
		

Crossrefs

Cf. A024912.

Programs

  • Mathematica
    Select[10*Range[200],PrimeQ[10#+1]&] (* Harvey P. Dale, Jan 10 2017 *)

A108857 Numbers n such that 10*n + 131 is prime.

Original entry on oeis.org

0, 2, 5, 6, 8, 11, 12, 14, 15, 18, 20, 27, 29, 30, 33, 36, 39, 41, 44, 47, 50, 51, 53, 56, 57, 62, 63, 68, 69, 75, 78, 81, 84, 86, 89, 90, 92, 93, 96, 102, 104, 105, 107, 110, 116, 117, 119, 123, 125, 132, 134, 135, 138, 140, 144, 147, 149, 159, 161, 167, 168, 170, 173
Offset: 1

Views

Author

Parthasarathy Nambi, Jul 11 2005

Keywords

Examples

			If n=0 then 10*n + 131 = 131 (prime).
If n=33 then 10*n + 131 = 461 (prime).
		

Crossrefs

Cf. A024912.

Programs

Formula

a(n) = A024912(n+6) - 13. - Robert Israel, Aug 09 2015

A243962 Primes p such that 10p + 1, 100p + 1 and 1000p + 1 are also primes.

Original entry on oeis.org

7, 13, 19, 103, 823, 1021, 1579, 1867, 2503, 3331, 5779, 6871, 6949, 9007, 10093, 10399, 11317, 11743, 13327, 13381, 15859, 16657, 17539, 17659, 22189, 26317, 26557, 26821, 27397, 27943, 29209, 29383, 30211, 32443, 37309, 38287, 40213, 40507, 44497, 47569, 47977
Offset: 1

Views

Author

K. D. Bajpai, Jun 16 2014

Keywords

Examples

			7 is in the sequence because 7 is prime, 10*7 + 1 = 71 is prime, 100*7 + 1 = 701 is prime, and 1000*7 + 1 = 7001 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A243962:= proc() local p; p:=ithprime(n); if isprime(10*p+1) and isprime(100*p+1) and isprime(1000*p+1) then RETURN (p); fi; end: seq(A243962 (), n=1..5000);
  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[10 # + 1] && PrimeQ[100 # + 1] && PrimeQ[1000 # + 1] &]

A125869 Numbers k such that p=10*k+1 is prime and cos(2*Pi/p) is an algebraic number of a 5-smooth degree, but not 3-smooth.

Original entry on oeis.org

1, 3, 4, 6, 10, 15, 18, 24, 25, 27, 40, 54, 60, 64, 75, 81, 120, 160, 162, 180, 216, 225, 300, 400, 405, 480, 486, 648, 768, 810, 864, 900, 960, 972, 1125, 1440, 1536, 1600, 1944, 2160, 2187, 2250, 2304, 2400, 2560, 3240, 3375, 3645, 3750, 4096, 4320
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Comments

Numbers k such that p=10*k+1 is prime and the greatest prime divisor of p-1 is 5.

Crossrefs

Programs

  • Mathematica
    Do[If[Take[FactorInteger[EulerPhi[10n+1]][[ -1]],1]=={5} && PrimeQ[10n+1],Print[n]],{n,1,10000}]

Extensions

Edited by Don Reble, Apr 24 2007
Previous Showing 11-19 of 19 results.