cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A193749 Number of partitions of n into distinct parts that are squares or triangular numbers (A005214).

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 2, 1, 2, 4, 2, 1, 4, 4, 3, 5, 4, 3, 7, 7, 4, 6, 7, 6, 10, 10, 5, 10, 14, 10, 12, 14, 9, 14, 20, 13, 13, 20, 17, 18, 24, 17, 16, 27, 26, 22, 27, 25, 26, 35, 31, 26, 35, 37, 36, 42, 37, 35, 48, 47, 40, 49, 49, 48, 60, 58, 49, 61, 66, 61
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 03 2011

Keywords

Examples

			a(10) = #{10, 9+1, 6+4, 6+3+1} = 4;
a(11) = #{10+1, 6+4+1} = 2;
a(12) = #{9+3} = 1;
a(13) = #{10+3, 9+4, 9+3+1, 6+4+3} = 4.
		

Crossrefs

Programs

  • Haskell
    a193749 = p a005214_list where
       p _      0    = 1
       p (k:ks) m
         | m < k     = 0
         | otherwise = p ks (m - k) + p ks m

A225045 Number of partitions of n into distinct non-triangular numbers, cf. A014132.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 5, 5, 7, 7, 10, 10, 13, 13, 16, 18, 21, 25, 27, 32, 33, 41, 44, 53, 57, 65, 73, 81, 93, 102, 118, 128, 145, 159, 181, 200, 224, 246, 275, 304, 337, 375, 413, 460, 503, 559, 614, 679, 749, 821, 907, 991, 1096, 1197, 1319, 1442, 1582, 1733, 1893, 2076, 2265, 2482, 2702, 2956, 3220
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2013

Keywords

Examples

			a(10) = #{8+2} = 1;
a(11) = #{11, 9+2, 7+4, 5+4+2} = 4;
a(12) = #{12, 8+4, 7+5} = 3;
a(13) = #{13, 11+2, 9+4, 8+5, 7+4+2} = 5.
		

Crossrefs

Programs

  • Haskell
    a225045 = p a014132_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    
  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, 1, add(b(n-i*j, i-1), j=0..min(n/i,
          `if`(issqr(8*i+1), 0, 1)))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i*(i+1)/2, 0, If[n==0, 1, Sum[b[n-i*j, i-1], {j, 0, Min[n/i, If[IntegerQ[Sqrt[8*i+1]], 0, 1]]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N); Vec( prod(n=1,N, 1 + q^n) / prod(n=1,N, 1 + q^(n*(n+1)/2)) ) \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: prod(n>=1, 1 + q^n ) / prod(n>=1, 1 + q^(n*(n+1)/2) ). [Joerg Arndt, Apr 01 2014]
a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / (2+sqrt(2)) - 3*(3-2*sqrt(2)) * Zeta(3/2)^2 / (16*Pi)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jan 02 2017

A304876 L.g.f.: log(Product_{k>=1} (1 + x^(k*(k+1)/2))) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, -1, 4, -1, 1, 2, 1, -1, 4, 9, 1, -10, 1, -1, 19, -1, 1, 2, 1, -11, 25, -1, 1, -10, 1, -1, 4, 27, 1, -3, 1, -1, 4, -1, 1, 26, 1, -1, 4, -11, 1, -19, 1, -1, 64, -1, 1, -10, 1, 9, 4, -1, 1, 2, 56, -29, 4, -1, 1, -35, 1, -1, 25, -1, 1, 68, 1, -1, 4, 9, 1, -46, 1, -1, 19, -1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + 4*x^3/3 - x^4/4 + x^5/5 + 2*x^6/6 + x^7/7 - x^8/8 + 4*x^9/9 + 9*x^10/10 + ...
exp(L(x)) = 1 + x + x^3 + x^4 + x^6 + x^7 + x^9 + 2*x^10 + x^11 + x^13 + x^14 + x^15 + 2*x^16 + ... + A024940(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 77; Rest[CoefficientList[Series[Log[Product[1 + x^(k (k + 1)/2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 77; Rest[CoefficientList[Series[Sum[k (k + 1)/2 x^(k (k + 1)/2)/(1 + x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[(8 # + 1)^(1/2)] &], {n, 77}]
  • PARI
    A010054(n) = issquare(8*n + 1);
    A304876(n) = sumdiv(n,d,(-1)^(1+(n/d)) * A010054(d)*d); \\ Antti Karttunen, Feb 20 2023

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^(k*(k+1)/2)/(1 + x^(k*(k+1)/2)).
a(n) = Sum_{d|n} (-1)^(n/d+1)*A010054(d)*d.

A359348 Maximal coefficient of (1 + x) * (1 + x^3) * (1 + x^6) * ... * (1 + x^(n*(n+1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 12, 18, 27, 44, 73, 122, 210, 362, 620, 1050, 1857, 3290, 5949, 10665, 19086, 34330, 62252, 113643, 209460, 383888, 706457, 1300198, 2407535, 4468367, 8331820, 15525814, 28987902, 54180854, 101560631, 190708871, 358969426
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2022

Keywords

Examples

			(1 + x) * (1 + x^3) * (1 + x^6) * (1 + x^10) = 1 + x + x^3 + x^4 + x^6 + x^7 + x^9 + 2 * x^10 + x^11 + x^13 + x^14 + x^16 + x^17 + x^19 + x^20. So a(4) = 2.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1+x^(k*(k+1)/2))));

Formula

a(n) ~ sqrt(5) * 2^(n + 3/2) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Dec 29 2022

A280421 G.f.: Product_{k>=1} (1 + x^(k*(k+1)/2)) / (1 - x^k).

Original entry on oeis.org

1, 2, 3, 6, 10, 15, 24, 36, 52, 76, 109, 152, 211, 290, 393, 530, 709, 938, 1236, 1618, 2102, 2720, 3500, 4477, 5707, 7242, 9146, 11511, 14435, 18030, 22451, 27868, 34476, 42531, 52324, 64186, 78541, 95867, 116721, 141791, 171862, 207844, 250846, 302134
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2017

Keywords

Comments

Convolution of A024940 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^(k*(k+1)/2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(2*n/3)*Pi + 3^(1/4) * (sqrt(2)-1) * Zeta(3/2) * n^(1/4) / 2^(3/4) + 3*(2*sqrt(2)-3) * Zeta(3/2)^2 / (32*Pi)) / (8*sqrt(3)*n).

A294623 Number of partitions of n into distinct generalized heptagonal numbers (A085787).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 3, 1, 0, 3, 3, 1, 2, 2, 1, 1, 3, 3, 3, 2, 1, 2, 3, 4, 3, 2, 2, 3, 3, 3, 5, 3, 1, 3, 4, 3, 4, 5, 2, 3, 5, 4, 3, 4, 5, 4, 4, 3, 5, 5, 3, 5, 7, 5, 3, 6, 6, 6, 6, 5, 5, 6, 6, 5, 8, 7, 5, 5, 6, 7, 8, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Examples

			a(18) = 2 because we have [18] and [13, 4, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(k (5 k - 3)/2)) (1 + x^(k (5 k + 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(5*k-3)/2))*(1 + x^(k*(5*k+3)/2)).

A294624 Number of partitions of n into distinct generalized octagonal numbers (A001082).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 2, 0, 1, 1, 1, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 2, 3, 1, 1, 2, 2, 1, 0, 1, 3, 2, 2, 3, 1, 1, 1, 3, 5, 2, 2, 3, 2, 2, 1, 3, 5, 2, 1, 3, 3, 2, 1, 3, 6, 3, 1, 3, 4, 3, 1, 4, 7, 3, 0, 3, 6, 4, 1, 2, 7, 5, 2, 4, 5, 5, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Examples

			a(21) = 2 because we have [21] and [16, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(k (3 k - 2))) (1 + x^(k (3 k + 2))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(3*k-2)))*(1 + x^(k*(3*k+2))).

A303907 Expansion of Product_{k>=2} (1 + x^(k*(k+1)/2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 2, 1, 0, 1, 2, 0, 1, 3, 0, 0, 3, 0, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 0, 2, 4, 1, 2, 5, 1, 2, 3, 2, 3, 3, 2, 2, 5, 2, 4, 4, 2, 3, 6, 1, 3, 6, 3, 3, 7, 2, 2, 7, 3, 5, 6, 5, 4, 6, 4, 5, 5, 5, 4, 10, 4, 3, 11, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

Number of partitions of n into distinct triangular numbers > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 95; CoefficientList[Series[Product[1 + x^(k (k + 1)/2), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*A024940(k).
a(n) ~ exp(3*Pi^(1/3) * ((sqrt(2)-1)*Zeta(3/2))^(2/3) * n^(1/3) / 2^(4/3)) * ((sqrt(2)-1)*Zeta(3/2))^(1/3) / (2^(8/3) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, May 04 2018

A348528 Number of partitions of n into two or more distinct triangular numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 1, 1, 2, 0, 2, 3, 1, 1, 2, 2, 1, 4, 3, 0, 3, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 3, 6, 4, 2, 5, 4, 2, 6, 5, 3, 6, 6, 3, 5, 5, 5, 6, 5, 4, 7, 7, 5, 8, 6, 5, 9, 7, 4, 9, 9, 6, 10, 9, 3, 9, 10, 8, 11, 11, 9, 10, 10, 9, 10, 10, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 21 2021

Keywords

Crossrefs

A357070 Number of partitions of n into at most 2 distinct positive triangular numbers.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 1, 0, 2, 1, 1, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 25 2022

Keywords

Crossrefs

Previous Showing 21-30 of 42 results. Next