cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A025399 Numbers that are the sum of 3 distinct positive cubes in exactly 1 way.

Original entry on oeis.org

36, 73, 92, 99, 134, 153, 160, 190, 197, 216, 225, 244, 251, 281, 288, 307, 342, 349, 352, 368, 371, 378, 405, 408, 415, 434, 469, 476, 495, 521, 532, 540, 547, 560, 567, 577, 584, 586, 603, 623, 638, 645, 664, 684, 701, 729, 736, 738, 755, 757, 764, 792, 794, 801, 820
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025395 (not necessarily distinct), A024973.

Programs

  • Mathematica
    Reap[For[n = 1, n <= 1000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 && Length[#] == Length[Union[#]] &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

A024975 MINUS A024974. - R. J. Mathar, May 28 2008
{n: A025469(n) = 1}. - R. J. Mathar, Jun 15 2018

A137365 Prime numbers n such that n = p1^3 + p2^3 + p3^3, a sum of cubes of 3 distinct prime numbers.

Original entry on oeis.org

1483, 5381, 6271, 7229, 9181, 11897, 13103, 13841, 14489, 17107, 20357, 25747, 26711, 27917, 30161, 30259, 31247, 32579, 36161, 36583, 36677, 36899, 36901, 42083, 48817, 54181, 55511, 55691, 56377, 56897, 57637, 59093, 64151, 66347
Offset: 1

Views

Author

Keywords

Comments

Numbers n may have multiple decompositions; for example, n=185527 and n=451837 have two, and n=8627527 and n=32816503 have three. The smallest n with more than one decomposition is n = 185527 = 13^3+43^3+47^3 = 19^3+31^3+53^3, the 94th in the sequence. - R. J. Mathar, May 01 2008
Primes in A138853 and A138854. - M. F. Hasler, Apr 13 2008
The least prime, p, which has n decompositions {with its primes} is 1483 = {3, 5, 11}; 185527 = {13, 43, 47} & {19, 31, 53}; 8627527 = {19, 151, 173}, {33, 139, 181} & {71, 73, 199} and 1122871751 = {113, 751, 887}, {131, 701, 919}, {151, 659, 941} & {29, 107, 1039}. - Robert G. Wilson v, May 04 2008
The number of terms < 10^n: 0, 0, 0, 5, 56, 327, 2172, 13417, 86264, 567211, ..., . - Robert G. Wilson v, May 04 2008
The number of decompositions < 10^n: 0, 0, 0, 5, 56, 330, 2201, 13609, 87200, 571770, ..., . - Robert G. Wilson v, May 04 2008

Examples

			1483=3^3+5^3+11^3, 5381=17^3+7^3+5^3, 6271=3^3+11^3+17^3, etc.
		

Crossrefs

Cf. A137366.
Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A122723 (primes in A024975), A138853-A138854.

Programs

  • Maple
    # From R. J. Mathar: (Start)
    isA030078 := proc(n) local cbr; cbr := floor(root[3](n)) ; if cbr^3 = n and isprime(cbr) then true ; else false; fi ; end:
    isA137365 := proc(n) local p1,p2,p3,p3cub ; if isprime(n) then p1 := 2 ; while p1^3 <= n-16 do p2 := nextprime(p1) ; while p1^3+p2^3 <= n-8 do p3cub := n-p1^3-p2^3 ; if p3cub> p2^3 and isA030078(p3cub) then RETURN(true) ; fi ; p2 := nextprime(p2) ; od: p1 := nextprime(p1) ; od; RETURN(false) ; else RETURN(false) ; fi ; end:
    for i from 1 do if isA137365( ithprime(i)) then printf("%d\n",ithprime(i)) ; fi ; od:
    # (End)
  • Mathematica
    Array[r, 99]; Array[y, 99]; For[i = 0, i < 10^2, r[i] = y[i] = 0; i++ ]; z = 4^2; n = 0; For[i1 = 1, i1 < z, a = Prime[i1]; a2 = a^3; For[i2 = i1 + 1, i2 < z, b = Prime[i2]; b2 = b^3; For[i3 = i2 + 1, i3 < z, c = Prime[i3]; c2 = c^3; p = a2 + b2 + c2; If[PrimeQ[p], Print[a2, " + ", b2, " + ", c2, " = ", p]; n++; r[n] = p]; i3++ ]; i2++ ]; i1++ ]; Sort[Array[r, 88]] (* Vladimir Joseph Stephan Orlovsky *)
    lst = {}; Do[p = Prime[q]^3 + Prime[r]^3 + Prime[s]^3; If[PrimeQ@ p, AppendTo[lst, p]], {q, 13}, {r, q - 1}, {s, r - 1}]; Take[Sort@ lst, 36] (* Robert G. Wilson v, Apr 13 2008 *)
    nn=20; lim=Prime[nn]^3+3^3+5^3; Union[Select[Total[#^3]& /@ Subsets[Prime[Range[2,nn]], {3}], #Harvey P. Dale, Jan 15 2011 *)
  • PARI
    c=0; forprime(p=1,10^6, isA138853(p) & write("b137365.txt",c++," ",p)) \\ M. F. Hasler, Apr 13 2008

Formula

A137365 = A000040 intersect A138853 = A000040 intersect A138854. - M. F. Hasler, Apr 13 2008

Extensions

Corrected and extended by Zak Seidov, R. J. Mathar and Robert G. Wilson v, Apr 12 2008
Further edits by R. J. Mathar and N. J. A. Sloane, Jun 07 2008

A306213 Numbers that are the sum of cubes of three distinct positive integers in arithmetic progression.

Original entry on oeis.org

36, 99, 153, 216, 288, 405, 408, 495, 645, 684, 792, 855, 972, 1071, 1197, 1224, 1407, 1548, 1584, 1701, 1728, 1968, 2079, 2241, 2304, 2403, 2541, 2673, 2736, 3051, 3060, 3240, 3264, 3537, 3540, 3888, 3960, 4059, 4131, 4257, 4500, 4587, 4833, 5049, 5160, 5256, 5472, 5643, 5832, 5940, 6336, 6369, 6669
Offset: 1

Views

Author

Antonio Roldán, Jan 29 2019

Keywords

Comments

Numbers that can be written as 3*a*(a^2 + 2*b^2) = (a-b)^3 + a^3 + (a+b)^3 where 0 < b < a. - Robert Israel, Dec 15 2022

Examples

			153 = 1^3 + 3^3 + 5^3, with 3 - 1 = 5 - 3 = 2;
972 = 3^3 + 6^3 + 9^3, with 6 - 3 = 9 - 6 = 3.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= {}:
    for a from 1 while a^3 + (a+1)^3 + (a+2)^3 <= N do
      for d from 1 do
        x:= a^3 + (a+d)^3 + (a+2*d)^3;
        if x > N then break fi;
        S:= S union {x}
    od od:
    sort(convert(S,list)); # Robert Israel, Dec 14 2022
  • PARI
    for(n=3, 7000, k=(n/3)^(1/3); a=2; v=0; while(a<=k&&v==0, b=(n-3*a^3)/(6*a); if(b==truncate(b)&&issquare(b), d=sqrt(b), d=0); if(d>=1&&d<=a-1, v=1; print1(n,", ")); a+=1))
    
  • PARI
    w=List(); for(n=3, 7000, k=(n/3)^(1/3); for(a=2, k, for(c=1, a-1, v=(a-c)^3+a^3+(a+c)^3; if(v==n, listput(w,n))))); print(vecsort(Vec(w),,8))

A138853 Numbers which are the sum of 3 cubes of distinct odd primes.

Original entry on oeis.org

495, 1483, 1701, 1799, 2349, 2567, 2665, 3555, 3653, 3871, 5065, 5283, 5381, 6271, 6369, 6587, 7011, 7137, 7229, 7235, 7327, 7453, 8217, 8315, 8441, 8533, 9083, 9181, 9399, 10387, 11799, 11897, 12115, 12319, 12537, 12635, 13103, 13525, 13623, 13841
Offset: 1

Views

Author

M. F. Hasler, Apr 13 2008

Keywords

Comments

Dropping the restriction to odd primes would add to this sequence of odd terms the sequence of even terms of the form 8+p(i)^3+p(j)^3 (i>j>1), i.e. 8+{ even terms of A120398 }, cf. A138854.

Crossrefs

Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138854, A120398.

Programs

  • PARI
    isA138853(n)= local( c,d); n>494 && forprime( p=floor( sqrtn( n\3+1,3))+1, floor( sqrtn( n-151,3)), d=n-p^3; forprime( q=floor( sqrtn( d\2+1,3))+1, min( p-1, floor( sqrtn( d-26,3))), round( sqrtn( c=d-q^3,3 ))^3==c || next; isprime( round( sqrtn( c,3 ))) && return(1)))
    forstep(n=3^3+5^3+7^3,10^5,2, isA138853(n)&print1(n", "))

Formula

A138853={ p(i)^3+p(j)^3+p(k)^3 ; i>j>k>1 }

A385354 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^2, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

6, 188, 768, 1728, 2640, 21120, 42336, 13824, 71280, 5832, 80352, 74088, 425088, 421875, 1058400, 110592, 287496, 46656
Offset: 1

Views

Author

Zhining Yang, Jun 26 2025

Keywords

Comments

a(19) > 2000000, a(20) = 216000, a(22) = 884736.

Examples

			a(3)=768, because 768^2 = 54^3 + 59^3 + 61^3 = 40^3 + 62^3 + 66^3 = 24^3 + 40^3 + 80^3 and no integer less than 768 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^2, 3, 3],
         0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 2000}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 4}][[All, 1]]

Extensions

a(18) from Chai Wah Wu, Jul 05 2025

A165454 Numbers the squares of which are sums of three distinct positive cubes.

Original entry on oeis.org

6, 15, 27, 48, 53, 59, 71, 78, 84, 87, 90, 96, 98, 116, 120, 121, 125, 134, 153, 162, 163, 167, 180, 188, 204, 213, 216, 224, 225, 226, 230, 240, 242, 244, 251, 253, 255, 262, 264, 280, 287, 288, 303, 314, 324, 330, 342, 350, 356, 363, 368, 372, 381, 384, 393
Offset: 1

Views

Author

Keywords

Examples

			6 is in the sequence because 6^2 = 1^3+2^3+3^3.
15 is in the sequence because 15^2 = 1^3+2^3+6^3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sc:= {seq(seq(seq(a^3 + b^3 + c^3, a = 1 .. min(b-1, floor((N^2 - b^3 - c^3)^(1/3)))), b = 2 .. min(c-1,floor((N^2 - c^3)^(1/3)))), c = 3 .. floor(N^(2/3)))}:
    select(t -> member(t^2,sc), [$1..N]); # Robert Israel, Jan 27 2015
  • Mathematica
    lst={};Do[Do[Do[d=Sqrt[a^3+b^3+c^3];If[d<=834&&IntegerQ[d],AppendTo[lst, d]],{c,b+1,5!,1}],{b,a+1,5!,1}],{a,5!}];Take[Union@lst,123]
    Sqrt[# ]&/@Select[Total/@Subsets[Range[50]^3,{3}],IntegerQ[Sqrt[#]]&]// Union (* Harvey P. Dale, Oct 14 2020 *)

Formula

{k >0: k^2 in A024975}. [R. J. Mathar, Oct 06 2009]

Extensions

Comments moved to the examples by R. J. Mathar, Oct 07 2009
Title corrected by Jeppe Stig Nielsen, Jan 26 2015

A327586 Numbers k such that k^4 = a^3 + b^3 + c^3 for some pairwise coprime positive integers a,b,c.

Original entry on oeis.org

39, 57, 70, 74, 106, 111, 147, 174, 209, 216, 236, 237, 244, 252, 291, 300, 318, 327, 333, 336, 342, 360, 366, 372, 387, 403, 417, 424, 450, 462, 489, 524, 540, 561, 582, 594, 615, 624, 636, 638, 651, 660, 673, 696, 700, 714, 739, 741, 768, 771, 804, 827, 837
Offset: 1

Views

Author

Robert Israel, Mar 03 2020

Keywords

Comments

a(10) = 216 is the least term whose fourth power has two representations as a sum of the cubes of three pairwise coprime positive integers: 216^4 = 1217^3 + 639^3 + 484^3 = 1257^3 + 575^3 + 82^3. - Rémy Sigrist, Mar 04 2020
The least terms with 3 and 4 representations are a(230)=4914 and a(269)=5832, respectively. - Giovanni Resta, Mar 04 2020

Examples

			a(3) = 70 is a term because 70^4 = 81^3 + 167^3 + 266^3, and 81, 167 and 266 are positive and pairwise coprime.
		

Crossrefs

Cf. A024975.

Programs

  • Maple
    N:= 200: # to get all terms <= N
    qmax:= N^4: Res:= {}:
    for a from 1 while a^3 < qmax do
      for b from a+1 while a^3 + b^3 < qmax do
        if igcd(a,b) <> 1 then next fi;
        for c from b+1 while a^3 + b^3 + c^3 <= qmax do
          if igcd(c,a*b) <> 1 then next fi;
            q:= a^3 + b^3 + c^3;
            if issqr(q) and issqr(sqrt(q)) then
            Res:= Res union  {sqrt(sqrt(q))};
          fi
    od od od:
    sort(convert(Res,list));

Extensions

More terms from Rémy Sigrist, Mar 04 2020

A385566 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^6, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

3, 6, 16, 12, 27, 63, 38, 24, 94, 18, 123, 42, 93, 75, 141, 48, 66, 36, 153, 60, 140, 96, 279, 114, 200, 138, 410, 174, 72, 126, 186, 168, 204, 150, 108, 426, 132, 220, 418, 246, 498, 736, 144, 120, 294, 306, 210, 666, 282, 378, 252, 770, 216, 460, 462, 534, 180
Offset: 1

Views

Author

Zhining Yang, Jul 03 2025

Keywords

Examples

			a(3)=16, because 16^6 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3  and no integer less than 16 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^6, 3, 3], 0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 30}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]

Extensions

a(41)-a(57) from Chai Wah Wu, Jul 07 2025

A112474 Squares that are the sum of three distinct positive cubes.

Original entry on oeis.org

36, 225, 729, 2304, 2809, 3481, 5041, 6084, 7056, 7569, 8100, 9216, 9604, 13456, 14400, 14641, 15625, 17956, 23409, 26244, 26569, 27889, 32400, 35344, 41616, 45369, 46656, 50176, 50625, 51076, 52900, 57600, 58564, 59536, 63001, 64009
Offset: 1

Views

Author

Rick L. Shepherd, Sep 06 2005

Keywords

Examples

			36 = 6^2 = 1^3 + 2^3 + 3^3.
		

Crossrefs

Intersection of A000290 and A024975.

Programs

  • Mathematica
    Lim=64009;sqlim=Floor[Sqrt[Lim]];cblim=Ceiling[Lim^(1/3)]; Select[Range[sqlim]^2,MemberQ[ Union[Total/@Subsets[Range[cblim]^3,{3}]],#]&] (* James C. McMahon, Jun 04 2024 *)
  • PARI
    has(n)=my(x3,z); for(x=sqrtnint(n\3,3)+1, sqrtnint(n,3), x3=x^3; for(y=sqrtnint((n-x3)\2,3)+1, min(x-1,sqrtnint(n-x3,3)), if(ispower(n-x3-y^3,3,&z) && z0, return(1)))); 0
    list(lim)=my(v=List(),t); for(n=6,sqrtint(lim\1), if(has(t=n^2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Sep 20 2016

Extensions

Offset corrected by Charles R Greathouse IV, Sep 20 2016

A385565 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^4, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

11, 21, 64, 144, 330, 846, 342, 252, 1331, 1008, 720, 1890, 3780, 729, 4200, 2016, 1000, 216, 6300, 8352, 10800, 12312, 8568, 19440, 8280, 9576, 21204
Offset: 1

Views

Author

Zhining Yang, Jul 03 2025

Keywords

Comments

a(13) and a(15) not found up to k = 3300, a(14) = 729, a(16) = 2016, a(17) = 1000, a(18) = 216.

Examples

			a(3)=64, because 64^4 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3 and no integer less than 64 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^4, 3, 3],
          0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 400}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]

Extensions

a(13), a(15), a(19)-a(21) from Chai Wah Wu, Jul 08 2025
a(22)-a(27) from Chai Wah Wu, Jul 18 2025
Previous Showing 11-20 of 26 results. Next