A318223
Expansion of e.g.f. exp(x/(1 + 2*x)).
Original entry on oeis.org
1, 1, -3, 13, -71, 441, -2699, 9157, 206193, -8443151, 236126701, -6169406979, 161388751657, -4327824442967, 120012465557349, -3450029411174219, 102741264191105761, -3160671409312412703, 99982488984008583133, -3230094912866216253971, 105481073534842477321881, -3423260541695907002392679
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x/(1+2*x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 07 2019
-
seq(n!*coeff(series(exp(x/(1+2*x)),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 09 2019
-
nmax = 21; CoefficientList[Series[Exp[x/(1 + 2 x)], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-2)^(n - k) Binomial[n - 1, k - 1] n!/k!, {k, 0, n}], {n, 0, 21}]
a[n_] := a[n] = Sum[(-2)^(k - 1) k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
Join[{1}, Table[(-2)^(n - 1) n! Hypergeometric1F1[1 - n, 2, 1/2], {n, 21}]]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(x/(1+2*x)))) \\ G. C. Greubel, Feb 07 2019
-
m = 30; T = taylor(exp(x/(1+2*x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 07 2019
A341033
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-k*x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 37, 73, 1, 1, 1, 9, 73, 361, 501, 1, 1, 1, 11, 121, 1009, 4361, 4051, 1, 1, 1, 13, 181, 2161, 17341, 62701, 37633, 1, 1, 1, 15, 253, 3961, 48081, 355951, 1044205, 394353, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 73, 361, 1009, 2161, 3961, ...
1, 501, 4361, 17341, 48081, 108101, ...
-
T[0, k_] = 1; T[n_, k_] := n!*Sum[If[k == n - j == 0, 1, k^(n - j)]*Binomial[n - 1, j - 1]/j!, {j, 1, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 03 2021 *)
-
{T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^(n-j)*binomial(n-1, j-1)/j!))}
-
{T(n, k) = if(n<2, 1, (2*k*n-2*k+1)*T(n-1, k)-k^2*(n-1)*(n-2)*T(n-2, k))}
A362204
Expansion of e.g.f. exp(x/sqrt(1-2*x)).
Original entry on oeis.org
1, 1, 3, 16, 121, 1176, 13921, 193978, 3106881, 56201176, 1132709041, 25162197006, 610668537073, 16073212005436, 455980333073721, 13868451147012946, 450140785396634881, 15529495879187075088, 567427732311438658081, 21889446540911251445206
Offset: 0
-
Table[n! * Sum[2^(n-k) * Binomial[n-k/2-1,n-k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 20 2024 *)
Join[{1, 1}, RecurrenceTable[{(-4 + n) (-3 + n) (-2 + n) a[-4 + n] + (-2 + n) (-327 + 290 n - 84 n^2 + 8 n^3) a[-3 + n] + (259 - 299 n + 108 n^2 - 12 n^3) a[-2 + n] + 3 (16 - 13 n + 2 n^2) a[-1 + n] + (5 - n) a[n] == 0, a[2] == 3, a[3] == 16, a[4] == 121, a[5] == 1176}, a, {n, 2, 20}]] (* Vaclav Kotesovec, Feb 20 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/sqrt(1-2*x))))
A059374
Triangle read by rows, T(n, k) = Sum_{i=0..n} L'(n, n-i) * binomial(i, k), for k = 0..n-1.
Original entry on oeis.org
1, 3, 2, 13, 18, 6, 73, 156, 108, 24, 501, 1460, 1560, 720, 120, 4051, 15030, 21900, 15600, 5400, 720, 37633, 170142, 315630, 306600, 163800, 45360, 5040, 394353, 2107448, 4763976, 5891760, 4292400, 1834560, 423360, 40320
Offset: 1
Triangle begins:
[1],
[3, 2],
[13, 18, 6],
[73, 156, 108, 24],
[501, 1460, 1560, 720, 120],
...
-
t[n_, k_] := Sum[ Binomial[n-1, n-i-1]*n!/(n-i)!*Binomial[i, k], {i, 0, n}]; Table[t[n, k], {n, 1, 8}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Mar 22 2013 *)
-
for(n=1,10, for(k=0,n-1, print1(sum(j=0,n, binomial(j,k)* binomial(n-1,n-j-1)*n!/(n-j)!), ", "))) \\ G. C. Greubel, Jan 29 2018
A079621
Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).
Original entry on oeis.org
1, 4, 1, 24, 12, 1, 192, 144, 24, 1, 1920, 1920, 480, 40, 1, 23040, 28800, 9600, 1200, 60, 1, 322560, 483840, 201600, 33600, 2520, 84, 1, 5160960, 9031680, 4515840, 940800, 94080, 4704, 112, 1, 92897280, 185794560, 108380160, 27095040, 3386880, 225792
Offset: 1
Triangle begins:
1;
4, 1;
24, 12, 1;
192, 144, 24, 1;
1920, 1920, 480, 40, 1;
...
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 2^n*(n+1)!, 9); # Peter Luschny, Jan 26 2016
-
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2^#*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A331658
E.g.f.: exp(x/(1 - 2*x)) / (1 - x).
Original entry on oeis.org
1, 2, 9, 64, 617, 7446, 107377, 1795844, 34114929, 724822282, 17018900921, 437402060712, 12208463140249, 367629791490014, 11876750557295457, 409663873470828076, 15023747377122799457, 583644746007467984274, 23939828792355240206569, 1033788018952899566018192
Offset: 0
-
nmax = 19; CoefficientList[Series[Exp[x/(1 - 2 x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[Binomial[n, k]^2 k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]
A380258
Expansion of e.g.f. exp( (1/(1-5*x)^(2/5) - 1)/2 ).
Original entry on oeis.org
1, 1, 8, 106, 1954, 46082, 1323064, 44750644, 1741897340, 76672512316, 3764746706176, 203976645319448, 12086590557877144, 777464693554778776, 53948773488864143072, 4016672567726156437744, 319379204127841984947472, 27010128651142535536409360, 2420802590890201251989984128
Offset: 0
-
CoefficientList[Series[Exp[ (1/(1-5*x)^(2/5) - 1)/2 ],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Mar 31 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-5*x)^(2/5)-1)/2)))
Comments