cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A318223 Expansion of e.g.f. exp(x/(1 + 2*x)).

Original entry on oeis.org

1, 1, -3, 13, -71, 441, -2699, 9157, 206193, -8443151, 236126701, -6169406979, 161388751657, -4327824442967, 120012465557349, -3450029411174219, 102741264191105761, -3160671409312412703, 99982488984008583133, -3230094912866216253971, 105481073534842477321881, -3423260541695907002392679
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x/(1+2*x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Feb 07 2019
    
  • Maple
    seq(n!*coeff(series(exp(x/(1+2*x)),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[x/(1 + 2 x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-2)^(n - k) Binomial[n - 1, k - 1] n!/k!, {k, 0, n}], {n, 0, 21}]
    a[n_] := a[n] = Sum[(-2)^(k - 1) k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
    Join[{1}, Table[(-2)^(n - 1) n! Hypergeometric1F1[1 - n, 2, 1/2], {n, 21}]]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x/(1+2*x)))) \\ G. C. Greubel, Feb 07 2019
    
  • Sage
    m = 30; T = taylor(exp(x/(1+2*x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 07 2019

Formula

E.g.f.: Product_{k>=1} exp((-2)^(k-1)*x^k).
a(n) = Sum_{k=0..n} (-2)^(n-k)*binomial(n-1,k-1)*n!/k!.
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^(k-1)*k!*binomial(n-1,k-1)*a(n-k).

A341033 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-k*x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 37, 73, 1, 1, 1, 9, 73, 361, 501, 1, 1, 1, 11, 121, 1009, 4361, 4051, 1, 1, 1, 13, 181, 2161, 17341, 62701, 37633, 1, 1, 1, 15, 253, 3961, 48081, 355951, 1044205, 394353, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2021

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1, ...
  1,   1,    1,     1,     1,      1, ...
  1,   3,    5,     7,     9,     11, ...
  1,  13,   37,    73,   121,    181, ...
  1,  73,  361,  1009,  2161,   3961, ...
  1, 501, 4361, 17341, 48081, 108101, ...
		

Crossrefs

Main diagonal gives A293146.

Programs

  • Mathematica
    T[0, k_] = 1; T[n_, k_] := n!*Sum[If[k == n - j == 0, 1, k^(n - j)]*Binomial[n - 1, j - 1]/j!, {j, 1, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 03 2021 *)
  • PARI
    {T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^(n-j)*binomial(n-1, j-1)/j!))}
    
  • PARI
    {T(n, k) = if(n<2, 1, (2*k*n-2*k+1)*T(n-1, k)-k^2*(n-1)*(n-2)*T(n-2, k))}

Formula

T(n,k) = Sum_{j=1..n} k^(n-j) * (n!/j!) * binomial(n-1,j-1) for n > 0.
T(n,k) = (2*k*n-2*k+1) * T(n-1,k) - k^2 * (n-1) * (n-2) * T(n-2,k) for n > 1.

A362204 Expansion of e.g.f. exp(x/sqrt(1-2*x)).

Original entry on oeis.org

1, 1, 3, 16, 121, 1176, 13921, 193978, 3106881, 56201176, 1132709041, 25162197006, 610668537073, 16073212005436, 455980333073721, 13868451147012946, 450140785396634881, 15529495879187075088, 567427732311438658081, 21889446540911251445206
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[2^(n-k) * Binomial[n-k/2-1,n-k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 20 2024 *)
    Join[{1, 1}, RecurrenceTable[{(-4 + n) (-3 + n) (-2 + n) a[-4 + n] + (-2 + n) (-327 + 290 n - 84 n^2 + 8 n^3) a[-3 + n] + (259 - 299 n + 108 n^2 - 12 n^3) a[-2 + n] + 3 (16 - 13 n + 2 n^2) a[-1 + n] + (5 - n) a[n] == 0, a[2] == 3, a[3] == 16, a[4] == 121, a[5] == 1176}, a, {n, 2, 20}]] (* Vaclav Kotesovec, Feb 20 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/sqrt(1-2*x))))

Formula

a(n) = n! * Sum_{k=0..n} (-2)^k * binomial(-(n-k)/2,k)/(n-k)! = n! * Sum_{k=0..n} 2^(n-k) * binomial(n-k/2-1,n-k)/k!.
From Vaclav Kotesovec, Feb 20 2024: (Start)
a(n) ~ 3^(-1/2) * 2^(n - 1/6) * exp(3*2^(-4/3)*n^(1/3) - n) * n^(n - 1/3) * (1 - 3/(16*(n/2)^(1/3))).
Recurrence (for n>5): (n-5)*a(n) = 3*(2*n^2 - 13*n + 16)*a(n-1) - (12*n^3 - 108*n^2 + 299*n - 259)*a(n-2) + (n-2)*(8*n^3 - 84*n^2 + 290*n - 327)*a(n-3) + (n-4)*(n-3)*(n-2)*a(n-4). (End)

A059374 Triangle read by rows, T(n, k) = Sum_{i=0..n} L'(n, n-i) * binomial(i, k), for k = 0..n-1.

Original entry on oeis.org

1, 3, 2, 13, 18, 6, 73, 156, 108, 24, 501, 1460, 1560, 720, 120, 4051, 15030, 21900, 15600, 5400, 720, 37633, 170142, 315630, 306600, 163800, 45360, 5040, 394353, 2107448, 4763976, 5891760, 4292400, 1834560, 423360, 40320
Offset: 1

Views

Author

Vladeta Jovovic, Jan 28 2001

Keywords

Comments

L'(n, i) are unsigned Lah numbers (Cf. A008297).

Examples

			Triangle begins:
  [1],
  [3, 2],
  [13, 18, 6],
  [73, 156, 108, 24],
  [501, 1460, 1560, 720, 120],
  ...
		

Crossrefs

Cf. T(n, 0) = A000262, A025168 (row sums), A000012 (alternating row sums), A059110.

Programs

  • Mathematica
    t[n_, k_] := Sum[ Binomial[n-1, n-i-1]*n!/(n-i)!*Binomial[i, k], {i, 0, n}]; Table[t[n, k], {n, 1, 8}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Mar 22 2013 *)
  • PARI
    for(n=1,10, for(k=0,n-1, print1(sum(j=0,n, binomial(j,k)* binomial(n-1,n-j-1)*n!/(n-j)!), ", "))) \\ G. C. Greubel, Jan 29 2018

Formula

E.g.f.: exp(x/(1-(1+y)*x))/(1-(1+y)*x)^2. - Vladeta Jovovic, May 10 2003

A079621 Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).

Original entry on oeis.org

1, 4, 1, 24, 12, 1, 192, 144, 24, 1, 1920, 1920, 480, 40, 1, 23040, 28800, 9600, 1200, 60, 1, 322560, 483840, 201600, 33600, 2520, 84, 1, 5160960, 9031680, 4515840, 940800, 94080, 4704, 112, 1, 92897280, 185794560, 108380160, 27095040, 3386880, 225792
Offset: 1

Views

Author

Vladeta Jovovic, Jan 29 2003

Keywords

Comments

Also the Bell transform of A002866(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -1 <= d <= 2). - Shuhei Tsujie, Apr 26 2019

Examples

			Triangle begins:
     1;
     4,    1;
    24,   12,   1;
   192,  144,  24,  1;
  1920, 1920, 480, 40, 1;
  ...
		

Crossrefs

Cf. A002866 (first column), A025168 (row sums).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 2^n*(n+1)!, 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[2^#*(#+1)!&, rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

E.g.f.: exp(x*y/(1-2*x)).
T(n, k) = n!/k!*binomial(n-1, k-1)*2^(n-k). - Vladeta Jovovic, Sep 24 2003
The n-th row polynomial equals x o (x + 2) o (x + 4) o ... o (x + 2*n), where o is the deformed Hadamard product of power series defined in Bala, section 3.1. - Peter Bala, Jan 18 2018

A331658 E.g.f.: exp(x/(1 - 2*x)) / (1 - x).

Original entry on oeis.org

1, 2, 9, 64, 617, 7446, 107377, 1795844, 34114929, 724822282, 17018900921, 437402060712, 12208463140249, 367629791490014, 11876750557295457, 409663873470828076, 15023747377122799457, 583644746007467984274, 23939828792355240206569, 1033788018952899566018192
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x/(1 - 2 x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[Binomial[n, k]^2 k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * k! * A000262(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * k! * A025168(n-k).
a(n) ~ 2^(n + 1/4) * n^(n - 1/4) * exp(-1/4 + sqrt(2*n) - n) * (1 - 23*sqrt(2) / (48*sqrt(n))). - Vaclav Kotesovec, Jan 26 2020

A380258 Expansion of e.g.f. exp( (1/(1-5*x)^(2/5) - 1)/2 ).

Original entry on oeis.org

1, 1, 8, 106, 1954, 46082, 1323064, 44750644, 1741897340, 76672512316, 3764746706176, 203976645319448, 12086590557877144, 777464693554778776, 53948773488864143072, 4016672567726156437744, 319379204127841984947472, 27010128651142535536409360, 2420802590890201251989984128
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[ (1/(1-5*x)^(2/5) - 1)/2 ],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Mar 31 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1/(1-5*x)^(2/5)-1)/2)))

Formula

a(n) = Sum_{k=0..n} 5^(n-k) * |Stirling1(n,k)| * A004211(k) = Sum_{k=0..n} 2^k * 5^(n-k) * |Stirling1(n,k)| * Bell_k(1/2), where Bell_n(x) is n-th Bell polynomial.
a(n) = (1/exp(1/2)) * (-5)^n * n! * Sum_{k>=0} binomial(-2*k/5,n)/(2^k * k!).
Previous Showing 11-17 of 17 results.