cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 84 results. Next

A256256 Total number of ON cells after n generations of cellular automaton on triangular grid, starting from a node, in which every 60-degree wedge looks like the Sierpiński's triangle.

Original entry on oeis.org

0, 6, 18, 30, 54, 66, 90, 114, 162, 174, 198, 222, 270, 294, 342, 390, 486, 498, 522, 546, 594, 618, 666, 714, 810, 834, 882, 930, 1026, 1074, 1170, 1266, 1458, 1470, 1494, 1518, 1566, 1590, 1638, 1686, 1782, 1806, 1854, 1902, 1998, 2046, 2142, 2238, 2430, 2454, 2502, 2550, 2646, 2694, 2790, 2886, 3078, 3126, 3222, 3318, 3510, 3606, 3798, 3990, 4374
Offset: 0

Views

Author

Omar E. Pol, Mar 20 2015

Keywords

Comments

Analog of A160720, but here we are working on the triangular lattice.
The first differences (A256257) gives the number of triangular cells turned ON at every generation.
Also 6 times the sum of all entries in rows 0 to n of Sierpiński's triangle A047999.
Also 6 times the total number of odd entries in first n rows of Pascal's triangle A007318, see formula section.
The structure contains three distinct kinds of polygons formed by triangular ON cells: the initial hexagon, rhombuses (each one formed by two ON cells) and unit triangles.
Note that if n is a power of 2 greater than 2, the structure looks like concentric hexagons with triangular holes, where some of them form concentric stars.

Examples

			On the infinite triangular grid we start with all triangular cells turned OFF, so a(0) = 0.
At stage 1, in the structure there are six triangular cells turned ON forming a regular hexagon, so a(1) = 6.
At stage 2, there are 12 new triangular ON cells forming six rhombuses around the initial hexagon, so a(2) = 6 + 12 = 18.
And so on.
		

Crossrefs

Programs

  • Mathematica
    Prepend[6*FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]], 0] &[63] (* Michael De Vlieger, Nov 03 2022, after Bradley Klee at A006046 *)
  • PARI
    a(n) = 6*sum(j=0, n, sum(k=0, j, binomial(j, k) % 2)); \\ Michel Marcus, Apr 01 2015

Formula

a(n) = 6*A006046(n).

A321981 Row n gives the chromatic symmetric function of the n-girder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 6, 0, 0, 16, 0, 2, 0, 0, 40, 12, 2, 0, 0, 0, 0, 96, 16, 44, 6, 0, 0, 0, 0, 0, 0, 0, 224, 136, 66, 52, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 512, 384, 208, 96, 30, 178, 0, 18, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1152, 1024, 584, 522, 138, 588, 102
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-girder has n vertices and looks like:
2-4-6- -n
|\|\|\ ... \|
1-3-5- n-1
Conjecture: All terms are nonnegative (verified up to n = 10). This is a special case of Stanley and Stembridge's poset-chain conjecture.

Examples

			Triangle begins:
    1
    2   0
    6   0   0
   16   0   2   0   0
   40  12   2   0   0   0   0
   96  16  44   6   0   0   0   0   0   0   0
  224 136  66  52   2   4   0   2   0   0   0   0   0   0   0
For example, row 6 gives: X_G6 = 96e(6) + 6e(33) + 16e(42) + 44e(51).
		

Crossrefs

A328778 Number of indecomposable closed walks of length 2n along the edges of a cube based at a vertex.

Original entry on oeis.org

1, 3, 12, 84, 588, 4116, 28812, 201684, 1411788, 9882516, 69177612, 484243284, 3389702988, 23727920916, 166095446412, 1162668124884, 8138676874188, 56970738119316, 398795166835212, 2791566167846484, 19540963174925388
Offset: 0

Views

Author

Geoffrey Critzer, Oct 27 2019

Keywords

Comments

An indecomposable closed walk returns to its starting vertex exactly once (on the final step).
For n > 1, a(n) is the number of 4-colorings of the grid graph P_2 X P_(n-1). More generally, for q > 1, the number of q-colorings of the grid graph P_2 X P_n is given by q*(q - 1)*((q - 1)*(q - 2) + 1)^(n - 1). - Sela Fried, Sep 25 2023

Crossrefs

Programs

  • Mathematica
    nn = 40; list = Range[0, nn]! CoefficientList[Series[ Cosh[x]^3, {x, 0, nn}], x]; a = Sum[list[[i]] x^(i - 1), {i, 1, nn + 1}]; Select[CoefficientList[Series[ 2 - 1/a, {x, 0, nn}], x], # > 0 &]
  • PARI
    Vec((1 - 4*x - 9*x^2) / (1 - 7*x) + O(x^25)) \\ Colin Barker, Oct 28 2019

Formula

G.f.: 2 - 1/f(x) where f(x) is the g.f. for A054879.
From Colin Barker, Oct 27 2019: (Start)
G.f.: (1 - 4*x - 9*x^2) / (1 - 7*x).
a(n) = 7*a(n-1) for n>2.
a(n) = 12*7^(n - 2) for n>1.
(End)
E.g.f.: (1/49)*(37 + 12*exp(7*x) + 63*x). - Stefano Spezia, Oct 27 2019

A080643 a(0)=0; for n>0, a(n) = 4^n - 2*3^(n-1).

Original entry on oeis.org

0, 2, 10, 46, 202, 862, 3610, 14926, 61162, 249022, 1009210, 4076206, 16422922, 66045982, 265246810, 1064175886, 4266269482, 17093775742, 68461196410, 274103065966, 1097187104842, 4391072942302, 17571265338010, 70305982058446, 281286690353002, 1125335047769662
Offset: 0

Views

Author

Max Alekseyev, Feb 26 2003

Keywords

Crossrefs

Complement of A025192 in 4^n.

Programs

  • Mathematica
    Join[{0},Table[4^n-2*3^(n-1),{n,30}]] (* or *) LinearRecurrence[{7,-12},{0,2,10},30] (* Harvey P. Dale, Dec 29 2023 *)
  • Python
    def A080643(n): return (1<<(n<<1))-(3**(n-1)<<1) if n else 0 # Chai Wah Wu, Apr 02 2025

Formula

G.f.: 2*x*(1-2*x)/((1-3*x)*(1-4*x)). - Colin Barker, Jan 20 2012
E.g.f.: (3*exp(4*x) - 2*exp(3*x) - 1)/3. - Stefano Spezia, Apr 03 2025

A081955 a(n) = 2^r*3^s where r = n(n+1)/2 and s = n(n-1)/2.

Original entry on oeis.org

1, 2, 24, 1728, 746496, 1934917632, 30091839012864, 2807929681968365568, 1572081206902992767287296, 5280985496827154199640037916672, 106440332834866049138191223105387495424, 12872079797383178927229037635891253693013557248
Offset: 0

Views

Author

Amarnath Murthy, Apr 02 2003

Keywords

Crossrefs

Sequence contains the product of a row in A081954.

Programs

  • Mathematica
    Do[Print[2^(n*(n+1)/2)*3^(n*(n-1)/2)], {n, 10}] (* Ryan Propper, Jun 15 2005 *)
  • PARI
    {a(n) = 3^(n*(n-1)/2) * 2^(n*(n+1)/2)} /* Michael Somos, Dec 17 2009 */

Formula

a(n+1) = 2^(n+1)*3^n*a(n), a(1) = 2. - Ryan Propper, Jun 15 2005
A171795(n) = a(-n). a(n+1) * a(n-1) = 6 * a(n)^2. - Michael Somos, Dec 17 2009

Extensions

More terms from Ryan Propper, Jun 15 2005

A099485 A Fibonacci convolution.

Original entry on oeis.org

1, 2, 5, 14, 37, 96, 251, 658, 1723, 4510, 11807, 30912, 80929, 211874, 554693, 1452206, 3801925, 9953568, 26058779, 68222770, 178609531, 467605822, 1224207935, 3205017984, 8390846017, 21967520066, 57511714181, 150567622478
Offset: 0

Views

Author

Paul Barry, Oct 18 2004

Keywords

Comments

A Chebyshev transform of A025192 with g.f. (1-x)/(1-3*x). The image of G(x) under the Chebyshev transform is (1/(1+x^2))*G(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-2,3,-1},{1,2,5,14},30] (* Harvey P. Dale, Jul 06 2017 *)

Formula

G.f.: (1-x+x^2)/((1+x^2)*(1-3*x+x^2)).
a(n) = 3*a(n-1)-2*a(n-2)+3*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^n*(2*3^(n-2*k)+0^(n-2*k))/3.
a(n) = Sum_{k=0..n} (0^k-sin(Pi*k/2))*Fibonacci(2*(n-k)+2).
a(n) = (1/6) * (4*Fibonacci(2*n+2) + I^n + (-I)^n). - Ralf Stephan, Dec 04 2004
Also a transformation of the Jacobsthal numbers A001045(n+1) under the mapping G(x)-> (1/(1-x+x^2))*G(x/(1-x+x^2)). - Paul Barry, Dec 11 2004
G.f.: g(f(x))/x, where g is g.f. of A001045 and f is g.f. of A128834. - Oboifeng Dira, Jun 21 2020

A114283 Sequence array for binomial transform of Jacobsthal numbers A001045(n+1).

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 18, 6, 2, 1, 54, 18, 6, 2, 1, 162, 54, 18, 6, 2, 1, 486, 162, 54, 18, 6, 2, 1, 1458, 486, 162, 54, 18, 6, 2, 1, 4374, 1458, 486, 162, 54, 18, 6, 2, 1, 13122, 4374, 1458, 486, 162, 54, 18, 6, 2, 1, 39366, 13122, 4374, 1458, 486, 162, 54, 18, 6, 2, 1
Offset: 0

Views

Author

Paul Barry, Nov 20 2005

Keywords

Comments

Sequence array for A025192. Row sums are 3^n, A000244. Diagonal sums are A015518(n+1). Inverse is A114284.

Examples

			Triangle begins
1;
2,1;
6,2,1;
18,6,2,1;
54,18,6,2,1;
162,54,18,6,2,1;
		

Programs

  • Haskell
    a114283 n k = a114283_tabl !! n !! k
    a114283_row n = a114283_tabl !! n
    a114283_tabl = iterate
       (\row -> (sum $ zipWith (+) row $ reverse row) : row) [1]
    -- Reinhard Zumkeller, Nov 27 2012

Formula

Riordan array ((1-x)/(1-3x), x).

A175732 a(n) = gcd(phi(n), psi(n)).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 4, 6, 2, 2, 4, 2, 6, 8, 8, 2, 6, 2, 4, 4, 2, 2, 8, 10, 6, 18, 12, 2, 8, 2, 16, 4, 2, 24, 12, 2, 6, 8, 8, 2, 12, 2, 4, 24, 2, 2, 16, 14, 10, 8, 12, 2, 18, 8, 24, 4, 2, 2, 16, 2, 6, 12, 32, 12, 4, 2, 4, 4, 24, 2, 24, 2, 6, 40, 12, 12, 24, 2, 16, 54, 2, 2, 24, 4, 6, 8, 8, 2, 24, 8
Offset: 1

Views

Author

Enrique Pérez Herrero, Aug 24 2010

Keywords

Comments

a(n)^2 divides J_2(n), where J_2 is A007434.
If p > 2 is a prime, a(n) = 2. - Enrique Pérez Herrero, Jan 02 2012

Examples

			a(56) = gcd(phi(56), psi(56)) = gcd(24, 96) = 24.
		

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; DedekindPsi[n_] := JordanTotient[n, 2]/EulerPhi[n]; A175732[n_] := GCD[EulerPhi[n], DedekindPsi[n]]; Array[A175732, 100]
    f1[p_, e_] := (p - 1)*p^(e - 1); f2[p_, e_] := (p + 1)*p^(e - 1); a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, GCD[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Array[a, 40] (* Amiram Eldar, Feb 20 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); gcd(prod(i = 1, #f~, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)), prod(i = 1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)));} \\ Amiram Eldar, Feb 20 2023

Formula

a(n) = gcd(A000010(n), A001615(n)).
a(n) >= (n*2^(omega(n)-1))/rad(n).
a(A002110(n)) = A078558(n). - Enrique Pérez Herrero, Dec 04 2012
For k>=1, a(2^k) = 2^(k-1) and a(p^k) = 2*p^(k-1) if p is an odd prime. - Amiram Eldar, Feb 20 2023
a(3^n) = A025192(n). - Enrique Pérez Herrero, Jun 05 2023

A191487 The row sums of the Sierpinski-Stern triangle A191372.

Original entry on oeis.org

0, 1, 3, 8, 9, 22, 24, 26, 27, 62, 66, 70, 72, 76, 78, 80, 81, 178, 186, 194, 198, 206, 210, 214, 216, 224, 228, 232, 234, 238, 240, 242, 243, 518, 534, 550, 558, 574, 582, 590, 594, 610, 618, 626, 630, 638, 642, 646
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The row sums a(n) of the Sierpinski-Stern triangle A191372 equal this sequence.
The differences diff1(n) = a(2*n+3) - a(2*n+1) and diff2(n) = (a(2*n+2) - a(2*n))/3, give rise to patterns that lead to Gould’s sequence A001316, see the examples.
The diff1(n) sequence as a triangle leads to Gould’s sequence in a peculiar way, see A191488. The leading terms of the diff1(n) rows are given by A001550(p+1), p>=1; for p=0 the leading term is 7. The rows sums of diff1(n) as a triangle equal A025192(p+2), p>=1; for p = 0 the row sum is 7. The row sums of diff1(n) as a triangle minus the first term equal 2*A053152(p+1).
The diff2(n) sequence as a triangle leads to Gould’s sequence A001316 in a simple way; just delete the first term and reverse the order of the rest of the terms; more terms require a higher row number. The leading terms of the diff2(n) rows are given by A085281(p), p>=0. The row sums of diff2(n) as a triangle equal A025192(p) and the row sums minus the first term equal A001047(p-1), p>=1; for p=0 the row sum minus the first term is 0.

Examples

			The first few rows of diff1(n) as a triangle, row lengths A000079(p) with p>=0, are:
[7]
[14, 4]
[36, 8, 6, 4]
[98, 16, 12, 8, 10, 8, 6, 4]
[276, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
[794, 64, 48, 32, 40, 32, 24, 16, 36, 32, 24, 16, 20, 16, 12, 8, 34, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
The first few rows of diff2(n) as a triangle, row lengths A011782(p) with p>=0, are:
[1]
[2]
[5, 1]
[13, 2, 2, 1]
[35, 4, 4, 2, 4, 2, 2, 1]
[97, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1]
[275, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1]
		

Crossrefs

Programs

  • Maple
    Add the following lines to the Maple program of A191372.
    A191487(0):=0: for d from 1 to 2^pmax do A191487(d):= 0: for Tx from 0 to 2^ceil(log(d)/ log(2))-1 do A191487(d):=A191487(d)+S2(Tx,d) od: od: seq(A191487(d),d=0..2^pmax);

Formula

a(2*n) = 3*a(n)
diff(n) = a(n+1) - a(n), diff1(n) = a(2*n+3) - a(2*n+1), diff2(n) = (a(2*n+2) - a(2*n))/3
a(2^n+1) - a(2^n) = A085281(n+1) = A007689(n) for n>=0
a(2^(n+1)+1) - a(2^(n+1)-1) = A001550(n+1) for n>=1.

A207608 Triangle of coefficients of polynomials u(n,x) jointly generated with A207609; see the Formula section.

Original entry on oeis.org

1, 2, 3, 3, 4, 11, 3, 5, 26, 20, 3, 6, 50, 74, 29, 3, 7, 85, 204, 149, 38, 3, 8, 133, 469, 547, 251, 47, 3, 9, 196, 952, 1618, 1160, 380, 56, 3, 10, 276, 1764, 4110, 4234, 2124, 536, 65, 3, 11, 375, 3048, 9318, 13036, 9262, 3520, 719, 74, 3, 12, 495, 4983
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
  1;
  2;
  3,  3;
  4, 11,  3;
  5, 26, 20,  3;
Triangle (2, -1/2, 1/2, 0, 0, 0, 0, ...) DELTA (0, 3/2, -1/2, 0, 0, 0, 0, ...) begins:
  1;
  2,   0;
  3,   3,   0;
  4,  11,   3,   0;
  5,  26,  20,   3,   0;
  6,  50,  74,  29,   3,   0;
  7,  85, 204, 149,  38,   3,   0;
  ... - _Philippe Deléham_, Mar 03 2012
		

Crossrefs

Cf. A207609.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207608 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207609 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else 2*x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017

Formula

u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 03 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-1,k) + T(n-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-y*x)/(1 - (2+y)*x - (y-1)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A025192(n), A001077(n), A180038(n) for x = 0, 1, 2, 3 respectively. (End)
Previous Showing 41-50 of 84 results. Next