cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 214 results. Next

A239523 Prime powers (A025475) such that the distances to the two nearest prime powers are primes.

Original entry on oeis.org

1, 25, 27, 32, 128, 512, 2048, 8192, 32768, 562949953421312
Offset: 1

Views

Author

Alex Ratushnyak, Mar 20 2014

Keywords

Comments

A subsequence of A239522.
a(4)...a(10) are powers of 2, a(10) = 2^49.

Crossrefs

A384783 The number of unordered factorizations of the n-th powerful number into 1 and prime powers p^e where p is prime and e >= 2 (A025475).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 2, 7, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 8, 1, 4, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 12, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 4, 1, 1, 1, 2, 2, 2, 2, 14, 1, 4, 1, 1, 7, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive terms in A188585.

Examples

			a(5) = 2 since the 5th powerful number, A001694(5) = 16, has 2 factorizations: 2^2 * 2^2 and 2^4.
a(11) = 4 since the 11th powerful number, A001694(11) = 64, has 4 factorizations: 2^2 * 2^2 * 2^2, 2^2 * 2^4, 2^3 * 2^3, and 2^6.
		

Crossrefs

Cf. A001694, A025475, A188585, A384784, A384785 (cubefull analog).

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}]]]}, Select[s /@ pow, # > 0 &]]; seq[10^4]
  • PARI
    s(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1), factor(n)[, 2]));
    pows(lim) = {my(p = List()); for(j = 1, sqrtnint(lim, 3), for(i = 1, sqrtint(lim \ j^3), listput(p, i^2 * j^3))); Set(p); }
    list(lim) = {my(p = pows(lim), v = List(), s1); for(k = 1, #p, s1 = s(p[k]); if(s1 > 0, listput(v, s1))); Vec(v);}

Formula

a(n) = A188585(A001694(n)).

A384784 Numbers with a record number of unordered factorizations into 1 and prime powers p^e where p is prime and e >= 2 (A025475).

Original entry on oeis.org

1, 16, 64, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 34359738368
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The least term that is not a power of 2 is a(47) = 2^35 * 3^10.
Indices of records in A188585.
All the terms are powerful numbers since A188585(1) = 1 and A188585(n) = 0 if n is a nonpowerful number.
The corresponding record values are 1, 2, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, ... (see the link for more values).

Crossrefs

Subsequence of A001694 and A025487 (i.e., of A181800).
Cf. A025475, A046055, A188585, A384783, A384786 (cubefull analog).

Programs

  • Mathematica
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, Length[lps]}]; seq]

A065772 Nontrivial prime powers k from A025475 such that tau(k^2) is prime but sigma(k^2) is a composite number.

Original entry on oeis.org

9, 25, 32, 121, 243, 343, 361, 961, 1331, 1369, 1681, 2048, 2209, 2809, 3481, 3721, 4489, 5041, 6561, 6859, 7921, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 16384, 16807, 17161, 18769, 19321, 19683, 22201, 22801, 24389, 24649, 26569
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Comments

Numbers k = A025475(m) such that A000005(k^2) is prime but A000203(k^2) is composite number.

Examples

			For k = 32: k^2 = 1024, tau(1024) = 11, sigma(1024) = 2047 = 23*89.
For k = 243, k^2 = 59049, tau(59049) = 11, sigma(59049) = 88573 = 23*3851.
Up to 10000000, 453 terms were found.
		

Crossrefs

Programs

  • Mathematica
    Do[ s=DivisorSigma[ 0, n^2 ]; y=DivisorSigma[ 1, n^2 ]; If[ Equal[ Length[ FactorInteger[ n ] ], 1 ]&&!PrimeQ[ n ] &&PrimeQ[ s ]&&!PrimeQ[ y ], Print[ n ] ], {n, 1, 10000000} ]

A067194 Sequence of prime numbers whose reverse is a nontrivial prime power (A025475).

Original entry on oeis.org

23, 61, 163, 521, 821, 1297, 1861, 4201, 9049, 9631, 12391, 14437, 16987, 92767, 94273, 96979, 108061, 123031, 125329, 127291, 142771, 148249, 165901, 180289, 270131, 906421, 906727, 906751, 921931, 942013, 942691, 965443, 969407, 986641
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2002

Keywords

Examples

			23 is a prime and its reversal is 32 = 2^5.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ If[ PrimeQ[n], b = ToExpression[ StringReverse[ ToString[n]]]; If[ !PrimeQ[b] && Mod[b, b - EulerPhi[b]] == 0, a = Append[a, n]]], {n, 1, 10^6} ]; a
    Select[Prime[Range[80000]],PrimePowerQ[IntegerReverse[#]]&& CompositeQ[ IntegerReverse[ #]]&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (ispower(subst(Polrev(digits(p)), x, 10),,&pp) && isprime(pp), print1(p, ", ")););} \\ Michel Marcus, Jun 03 2016

Extensions

Edited and extended by Robert G. Wilson v, Feb 19 2002 and Feb 24 2002

A077273 Ordered differences without repetitions between two successive powers of a prime but not a prime (A025475).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 30, 33, 38, 40, 41, 54, 63, 74, 94, 96, 104, 112, 120, 128, 138, 139, 151, 168, 186, 192, 199, 240, 248, 250, 255, 260, 271, 286, 288, 298, 307, 312, 316, 320, 354, 356, 362, 375, 393, 408, 423, 424, 432, 496, 504, 513
Offset: 1

Views

Author

Robert G. Wilson v, Oct 31 2002

Keywords

Examples

			33 = 546 - 513 = 2568 - 2535 = 6168 - 6135 = 458703 - 458670 = 885465 - 885432 = 1048608 - 1048575 = 6291480 - 6291447 = 37748688 - 37748655 = 125829345 - 125829312.
		

Crossrefs

Cf. A025475.

Programs

  • Mathematica
    pp = Sort[ Flatten[ Table[ Prime[n]^i, {n, 1, PrimePi[ Sqrt[10^16]]}, {i, 1, Log[ Prime[n], 10^16]}]]]; l = Length[pp]; d = Sort[Take[pp, -l + 1] - Take[pp, l - 1]]; Union[ Take[d, 10^5]]

A084289 Primes p such that the arithmetic mean of p and the next prime after p is a true prime power from A025475.

Original entry on oeis.org

3, 7, 61, 79, 619, 1669, 4093, 822631, 1324783, 2411797, 2588869, 2778877, 3243589, 3636631, 3736477, 5527189, 6115717, 6405943, 8720191, 9005989, 12752029, 16056031, 16589317, 18087991, 21743551, 25230511, 29343871, 34586131, 37736431, 39150037, 40056229
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Examples

			n = prime(9750374) = 174689077, next prime = 174689101, mean = 174689089 = 13217^2, a prime power. The arithmetic mean of two consecutive primes is never prime, while between two consecutive primes, prime powers occur. These prime powers are in the middle of gap: p+d/2 = q^w. The prime power is most often square and very rarely occurs more than once (see A053706).
		

Crossrefs

Programs

  • Mathematica
    fi[x_] := FactorInteger[x] ff[x_] := Length[FactorInteger[x]] Do[s=(Prime[n]+Prime[n+1])/2; s1=ff[s]; If[Equal[s1,1],Print[{n,p=Prime[n],s,fi[s],s-p,s1}]], {n,1,10000000}]
    Select[Partition[Prime[Range[25*10^5]],2,1],PrimePowerQ[Mean[#]]&][[;;,1]] (* Harvey P. Dale, Oct 15 2023 *)

Formula

Primes p(j) such that (p(j)+p(j+1))/2 = q(m)^w, where q(m) is a prime.

A088365 Local maxima of A053707 (first differences of A025475, powers of a prime but not prime).

Original entry on oeis.org

4, 9, 17, 40, 74, 54, 151, 120, 307, 312, 199, 408, 356, 424, 912, 1032, 1217, 840, 1872, 423, 1608, 2518, 1588, 1920, 1230, 2112, 3713, 1560, 5208, 2832, 3952, 2872, 3192, 3288, 3432, 8400, 5738, 4080, 4272, 4512, 6288, 8280, 8520, 5232, 5352, 3672, 8892
Offset: 1

Views

Author

Klaus Brockhaus, Sep 27 2003

Keywords

Comments

A053707(k) for k = 1 is a term iff A053707(k) >= A053707(k+1); A053707(k) for k > 1 is a term iff A053707(k-1) < A053707(k) and A053707(k) >= A053707(k+1).
A088366 gives the corresponding indices. Local minima of A053707 are in A088363.

Examples

			The first six terms of A053707 are 3,4,1,7,9,2, hence A053707(2) = 4 is the first and A053707(5) = 9 is the second local maximum of A053707.
		

Crossrefs

Programs

  • PARI
    {m=1; k=0; for(n=2,250000,if(matsize(factor(n))[1]==1&&factor(n)[1,2]>1,d=n-m; if((k<2||b
    				

A225106 Prime powers (A025475) that can be represented as a sum of two distinct prime powers.

Original entry on oeis.org

9, 25, 81, 125, 512, 5041
Offset: 1

Views

Author

Alex Ratushnyak, Apr 28 2013

Keywords

Comments

The next term, if it exists, is bigger than 2^64.
Conjecture: the sequence is finite. - Alex Ratushnyak, Feb 03 2020

Examples

			9 = 8 + 1.
25 = 16 + 9.
81 = 32 + 49.
125 = 121 + 4.
512 = 169 + 343.
5041 = 128 + 4913.
		

Crossrefs

Programs

  • C
    /* See Ratushnyak link. */
  • Mathematica
    nn = 10000; p = Sort[Flatten[Table[Prime[n]^i, {n, PrimePi[Sqrt[nn]]}, {i, 2, Log[Prime[n], nn]}]]]; p = Join[{1}, p]; t = Union[Select[Flatten[Table[p[[i]] + p[[j]], {i, Length[p] - 1}, {j, i + 1, Length[p]}]], # <= nn &]]; Intersection[p, t] (* T. D. Noe, Apr 29 2013 *)

A225792 Numbers n such that the sum of first n nontrivial prime powers (A025475 excluding 1) is divisible by n.

Original entry on oeis.org

1, 2, 3, 9, 13, 54, 384, 596, 7289, 18136, 226871, 1577601, 5240465, 13389981, 130707763, 157598052, 617834651, 998713177, 4596574856
Offset: 1

Views

Author

Alex Ratushnyak, May 16 2013

Keywords

Comments

a(16) > 146306912. There are 146306912 nontrivial prime powers <= 2^63. - Donovan Johnson, May 16 2013
a(20) > 41.2*10^9. - Giovanni Resta, May 16 2013

Examples

			The sum of first 9 nontrivial prime powers is 4 + 8 + 9 + 16 + 25 + 27 + 32 + 49 + 64 = 234. Because 234 is divisible by 9, the latter is in the sequence.
		

Crossrefs

Extensions

a(12)-a(15) from Donovan Johnson, May 16 2013
a(16)-a(19) from Giovanni Resta, May 16 2013
Previous Showing 11-20 of 214 results. Next