cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 155 results. Next

A071673 Sequence a(n) obtained by setting a(0) = 0; then reading the table T(x,y)=a(x)+a(y)+1 in antidiagonal fashion.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 6, 5, 6, 5, 4, 4, 5, 6, 6, 6, 6, 5, 4, 5, 5, 6, 6, 7, 6, 6, 5, 5, 5, 6, 6, 6, 7, 7, 6, 6, 6, 5, 4, 6, 7, 6, 7, 7, 7, 6, 7, 6, 4, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 7, 6, 6, 5, 6, 6, 7, 6, 8, 8, 7, 7, 8, 8, 6, 7, 6, 6
Offset: 0

Views

Author

Antti Karttunen, May 30 2002

Keywords

Comments

The fixed point of RASTxx transformation. The repeated applications of RASTxx starting from A072643 seem to converge toward this sequence. Compare to A072768 from which this differs first time at the position n=37, where A072768(37) = 4, while A071673(37) = 5.
Each term k occurs A000108(k) times, and maximal position where k occurs is A072638(k).
The size of each Catalan structure encoded by the corresponding terms in triangles A071671 & A071672 (i.e., the number of digits / 2), as obtained with the global ranking/unranking scheme presented in A071651-A071654.

Examples

			The first 15 rows of this irregular triangular table:
               0,
               1,
              2, 2,
             3, 3, 3,
            3, 4, 4, 3,
           4, 4, 5, 4, 4,
          4, 5, 5, 5, 5, 4,
         4, 5, 6, 5, 6, 5, 4,
        4, 5, 6, 6, 6, 6, 5, 4,
       5, 5, 6, 6, 7, 6, 6, 5, 5,
      5, 6, 6, 6, 7, 7, 6, 6, 6, 5,
     4, 6, 7, 6, 7, 7, 7, 6, 7, 6, 4,
    5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5,
   5, 6, 6, 7, 8, 7, 7, 7, 8, 7, 6, 6, 5,
  6, 6, 7, 6, 8, 8, 7, 7, 8, 8, 6, 7, 6, 6
etc.
E.g., we have
  a(1) = T(0,0) = a(0) + a(0) + 1 = 1,
  a(2) = T(1,0) = a(1) + a(0) + 1 = 2,
  a(3) = T(0,1) = a(0) + a(1) + 1 = 2,
  a(4) = T(2,0) = a(2) + a(0) + 1 = 3, etc.
		

Crossrefs

Same triangle computed modulo 2: A071674.
Permutations of this sequence include: A072643, A072644, A072645, A072660, A072768, A072789, A075167.

Programs

Formula

a(0) = 0, a(n) = 1 + a(A025581(n-1)) + a(A002262(n-1)) = 1 + a(A004736(n)) + a(A002260(n)).

Extensions

Self-referential definition added Jun 03 2002
Term a(0) = 0 prepended and the Example-section amended by Antti Karttunen, Aug 17 2021

A073345 Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 8, 0, 0, 0, 0, 0, 0, 0, 4, 20, 0, 0, 0, 0, 0, 0, 0, 0, 1, 40, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 94, 152, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114, 376, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Jul 31 2002

Keywords

Examples

			The top-left corner of this square array is
  1 0 0 0 0 0 0 0 0 ...
  0 1 0 0 0 0 0 0 0 ...
  0 0 2 1 0 0 0 0 0 ...
  0 0 0 4 6 6 4 1 0 ...
  0 0 0 0 8 20 40 68 94 ...
E.g. we have A000108(3) = 5 binary trees built from 3 non-leaf (i.e. branching) nodes:
_______________________________3
___\/__\/____\/__\/____________2
__\/____\/__\/____\/____\/_\/__1
_\/____\/____\/____\/____\./___0
The first four have height 3 and the last one has height 2, thus T(3,3) = 4, T(3,2) = 1 and T(3,any other value of k) = 0.
		

References

  • Luo Jian-Jin, Catalan numbers in the history of mathematics in China, in Combinatorics and Graph Theory, (Yap, Ku, Lloyd, Wang, Editors), World Scientific, River Edge, NJ, 1995.

Crossrefs

Variant: A073346. Column sums: A000108. Row sums: A001699.
Diagonals: A073345(n, n) = A011782(n), A073345(n+3, n+2) = A014480(n), A073345(n+2, n) = A073773(n), A073345(n+3, n) = A073774(n) - Henry Bottomley and AK, see the attached notes.
A073429 gives the upper triangular region of this array. Cf. also A065329, A001263.

Programs

  • Maple
    A073345 := n -> A073345bi(A025581(n), A002262(n));
    A073345bi := proc(n,k) option remember; local i,j; if(0 = n) then if(0 = k) then RETURN(1); else RETURN(0); fi; fi; if(0 = k) then RETURN(0); fi; 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073345bi(floor((n-1)/2),k-1)^2); end;
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
  • Mathematica
    a[0, 0] = 1; a[n_, k_]/;k2^n-1 := 0; a[n_, k_]/;1 <= n <= k <= 2^n-1 := a[n, k] = Sum[a[n-1, k-1-i](2Sum[ a[j, i], {j, 0, n-2}]+a[n-1, i]), {i, 0, k-1}]; Table[a[n, k], {n, 0, 9}, {k, 0, 9}]
    (* or *) a[0] = 0; a[1] = 1; a[n_]/;n>=2 := a[n] = Expand[1 + x a[n-1]^2]; gfT[n_] := a[n]-a[n-1]; Map[CoefficientList[ #, x, 8]&, Table[gfT[n], {n, 9}]/.{x^i_/;i>=9 ->0}] (Callan)

Formula

(See the Maple code below. Is there a nicer formula?)
This table was known to the Chinese mathematician Ming An-Tu, who gave the following recurrence in the 1730s. a(0, 0) = 1, a(n, k) = Sum[a(n-1, k-1-i)( 2*Sum[ a(j, i), {j, 0, n-2}]+a(n-1, i) ), {i, 0, k-1}]. - David Callan, Aug 17 2004
The generating function for row n, T_n(x):=Sum[T(n, k)x^k, k>=0], is given by T_n = a(n)-a(n-1) where a(n) is defined by the recurrence a(0)=0, a(1)=1, a(n) = 1 + x a(n-1)^2 for n>=2. - David Callan, Oct 08 2005

A073346 Table T(n,k) (listed antidiagonalwise in order T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), ...) giving the number of rooted plane binary trees of size n and "contracted height" k.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 1, 0, 8, 8, 0, 0, 0, 0, 0, 0, 12, 16, 0, 0, 0, 0, 0, 0, 2, 12, 40, 16, 0, 0, 0, 0, 0, 0, 2, 12, 80, 48, 0, 0, 0, 0, 0, 0, 0, 0, 12, 136, 144, 32, 0, 0, 0, 0, 0, 0, 0, 2, 20, 224, 384, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16
Offset: 0

Views

Author

Antti Karttunen, Jul 31 2002

Keywords

Comments

The height of binary trees is computed here in the same way as in A073345, except that whenever a complete binary tree of (2^k)-1 nodes with all its leaves at the same level, i.e., one of the following trees:
___________\/\/\/\/
______________\/____\ /__
____.__\/__\/____\/__ etc.
is encountered as a terminating subtree, it is regarded just a variant of . (an empty tree, a single leaf) and contributes nothing to the height of the tree.

Examples

			The top-left corner of this square array:
1 1 0 1 0 0 0 1 ...
0 0 2 0 2 2 0 0 ...
0 0 0 4 4 8 12 12 ...
0 0 0 0 8 16 40 80 ...
		

Crossrefs

Variant: A073345. The first row: A036987. Column sums: A000108. Diagonals: T(n, n) = A000007(n), T(n+1, n) = A000079(n), T(n+2, n) = A058922(n), T(n+3, n) = A074092(n) - [see the attached notes.].
A073430 gives the upper triangular region of this array. Used to compute A073431. Entries on row k are all divisible by 2^k, thus dividing them out yields the array/triangle A074079/A074080.

Programs

  • Maple
    A073346 := n -> A073346bi(A025581(n), A002262(n));
    A073346bi := proc(n,k) option remember; local i,j; if(0 = k) then RETURN(A036987(n)); fi; if(0 = n) then RETURN(0); fi; 2 * add(A073346bi(n-i-1,k-1) * add(A073346bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073346bi(n-i-1,k-1) * add(A073346bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073346bi(floor((n-1)/2),k-1)^2) - (`if`((1=k),1,0))*A036987(n); end;
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);

Formula

(See the Maple code below. Note that here we use the same convolution recurrence as with A073345, but only the initial conditions for the first two rows (k=0 and k=1) are different. Is there a nicer formula?)

Extensions

Sequence number in comments corrected

A114327 Table T(n,m) = n - m read by upwards antidiagonals.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 1, -1, -3, 4, 2, 0, -2, -4, 5, 3, 1, -1, -3, -5, 6, 4, 2, 0, -2, -4, -6, 7, 5, 3, 1, -1, -3, -5, -7, 8, 6, 4, 2, 0, -2, -4, -6, -8, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, 10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11, 12, 10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10, -12
Offset: 0

Views

Author

Keywords

Comments

From Clark Kimberling, May 31 2011: (Start)
If we arrange A000027 as an array with northwest corner
1 2 4 7 17 ...
3 5 8 12 18 ...
6 9 13 18 24 ...
10 14 19 25 32 ...
diagonals can be numbered as follows depending on their distance to the main diagonal:
Diag 0: 1, 5, 13, 25, ...
Diag 1: 2, 8, 18, 32, ...
Diag -1: 3, 9, 19, 33, ...,
then a(n) in the flattened array is the number of the diagonal that contains n+1. (End)
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in Jordan-Schwinger form (cf. Harter, Klee, Schwinger). Triangle terms T(n,k) = T(2j,j-m) satisfy: (1/2) T(2j,j-m) = = m. Matrix J_3 is diagonal, so this equality determines the only nonzero entries. - Bradley Klee, Jan 29 2016
For the characteristic polynomial of the n X n matrix M_n (Det(x*1_n - M_n)) with elements M_n(i, j) = i-j see the Michael Somos, Nov 14 2002, comment on A002415. - Wolfdieter Lang, Feb 05 2018
The entries of the n-th antidiagonal, T(n,1), T(n-1,2), ... , T(1,n), are the eigenvalues of the Hamming graph H(2,n-1) (or hypercube Q(n-1)). - Miquel A. Fiol, May 21 2024

Examples

			From _Wolfdieter Lang_, Feb 05 2018: (Start)
The table T(n, m) begins:
  n\m 0  1  2  3  4  5 ...
  0:  0 -1 -2 -3 -4 -5 ...
  1:  1  0 -1 -2 -3 -4 ...
  2:  2  1  0 -1 -2 -3 ...
  3:  3  2  1  0 -1 -2 ...
  4:  4  3  2  1  0 -1 ...
  5:  5  4  3  2  1  0 ...
  ...
The triangle t(n, k) begins:
  n\k  0  1  2  3  4  5  6  7  8  9  10 ...
  0:   0
  1:   1 -1
  2:   2  0 -2
  3:   3  1 -1 -3
  4:   4  2  0 -2 -4
  5:   5  3  1 -1 -3 -5
  6:   6  4  2  0 -2 -4 -6
  7:   7  5  3  1 -1 -3 -5 -7
  8:   8  6  4  2  0 -2 -4 -6 -8
  9:   9  7  5  3  1 -1 -3 -5 -7 -9
  10: 10  8  6  4  2  0 -2 -4 -6 -8 -10
  ... Reformatted and corrected. (End)
		

Crossrefs

Apart from signs, same as A049581. Cf. A003056, A025581, A002262, A002260, A004736. J_1,J_2: A094053; J_1^2,J_2^2: A141387, A268759. A002415.

Programs

  • Haskell
    a114327 n k = a114327_tabl !! n !! k
    a114327_row n = a114327_tabl !! n
    a114327_tabl = zipWith (zipWith (-)) a025581_tabl a002262_tabl
    -- Reinhard Zumkeller, Aug 09 2014
    
  • Maple
    seq(seq(i-2*j,j=0..i),i=0..30); # Robert Israel, Jan 29 2016
  • Mathematica
    max = 12; a025581 = NestList[Prepend[#, First[#]+1]&, {0}, max]; a002262 = Table[Range[0, n], {n, 0, max}]; a114327 = a025581 - a002262 // Flatten (* Jean-François Alcover, Jan 04 2016 *)
    Flatten[Table[-2 m, {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    T(n,m) = n-m \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import isqrt
    def A114327(n): return ((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)))**2+1-k # Chai Wah Wu, Nov 09 2024

Formula

G.f. for the table: Sum_{n, m>=0} T(n,m)*x^n*y^n = (x-y)/((1-x)^2*(1-y)^2).
E.g.f. for the table: Sum_{n, m>=0} T(n,m)x^n/n!*y^m/m! = (x-y)*e^{x+y}.
T(n,k) = A025581(n,k) - A002262(n,k).
a(n+1) = A004736(n) - A002260(n) or a(n+1) = ((t*t+3*t+4)/2-n) - (n-t*(t+1)/2), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012
G.f. as sequence: -(1+x)/(1-x)^2 + Sum_{j>=0} (2*j+1)*x^(j*(j+1)/2) / (1-x). The sum is related to Jacobi theta functions. - Robert Israel, Jan 29 2016
Triangle t(n, k) = n - 2*k, for n >= 0, k = 0..n. (see the Maple program). - Wolfdieter Lang, Feb 05 2018

Extensions

Formula improved by Reinhard Zumkeller, Aug 09 2014

A163358 Inverse permutation to A163357.

Original entry on oeis.org

0, 1, 4, 2, 5, 9, 13, 8, 12, 18, 24, 17, 11, 7, 3, 6, 10, 16, 22, 15, 21, 28, 37, 29, 38, 47, 58, 48, 39, 30, 23, 31, 40, 50, 60, 49, 59, 70, 83, 71, 84, 97, 112, 98, 85, 72, 61, 73, 62, 52, 42, 51, 41, 32, 25, 33, 26, 19, 14, 20, 27, 34, 43, 35, 44, 54, 64, 53, 63, 74, 87
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Comments

abs(A025581(a(n+1)) - A025581(a(n))) + abs(A002262(a(n+1)) - A002262(a(n))) = 1 for all n.

Crossrefs

Inverse: A163357. a(n) = A054239(A163356(n)). One-based version: A163362. See also A163334 and A163336.

A268715 Square array A(i,j) = A003188(A006068(i) + A006068(j)), read by antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 6, 6, 3, 4, 2, 5, 2, 4, 5, 12, 7, 7, 12, 5, 6, 4, 15, 6, 15, 4, 6, 7, 7, 13, 13, 13, 13, 7, 7, 8, 5, 4, 12, 9, 12, 4, 5, 8, 9, 24, 12, 5, 11, 11, 5, 12, 24, 9, 10, 8, 27, 4, 14, 10, 14, 4, 27, 8, 10, 11, 11, 25, 25, 10, 15, 15, 10, 25, 25, 11, 11, 12, 9, 8, 24, 29, 14, 12, 14, 29, 24, 8, 9, 12, 13, 13, 24, 9, 31, 31, 13, 13, 31, 31, 9, 24, 13, 13
Offset: 0

Views

Author

Antti Karttunen, Feb 12 2016

Keywords

Comments

Each row n is row A006068(n) of array A268820 without its A006068(n) initial terms.

Examples

			The top left [0 .. 15] x [0 .. 15] section of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15
   1,  3,  6,  2, 12,  4,  7,  5, 24,  8, 11,  9, 13, 15, 10, 14
   2,  6,  5,  7, 15, 13,  4, 12, 27, 25,  8, 24, 14, 10,  9, 11
   3,  2,  7,  6, 13, 12,  5,  4, 25, 24,  9,  8, 15, 14, 11, 10
   4, 12, 15, 13,  9, 11, 14, 10, 29, 31, 26, 30,  8, 24, 27, 25
   5,  4, 13, 12, 11, 10, 15, 14, 31, 30, 27, 26,  9,  8, 25, 24
   6,  7,  4,  5, 14, 15, 12, 13, 26, 27, 24, 25, 10, 11,  8,  9
   7,  5, 12,  4, 10, 14, 13, 15, 30, 26, 25, 27, 11,  9, 24,  8
   8, 24, 27, 25, 29, 31, 26, 30, 17, 19, 22, 18, 28, 20, 23, 21
   9,  8, 25, 24, 31, 30, 27, 26, 19, 18, 23, 22, 29, 28, 21, 20
  10, 11,  8,  9, 26, 27, 24, 25, 22, 23, 20, 21, 30, 31, 28, 29
  11,  9, 24,  8, 30, 26, 25, 27, 18, 22, 21, 23, 31, 29, 20, 28
  12, 13, 14, 15,  8,  9, 10, 11, 28, 29, 30, 31, 24, 25, 26, 27
  13, 15, 10, 14, 24,  8, 11,  9, 20, 28, 31, 29, 25, 27, 30, 26
  14, 10,  9, 11, 27, 25,  8, 24, 23, 21, 28, 20, 26, 30, 29, 31
  15, 14, 11, 10, 25, 24,  9,  8, 21, 20, 29, 28, 27, 26, 31, 30
		

Crossrefs

Main diagonal: A001969.
Row 0, column 0: A001477.
Row 1, column 1: A268717.
Antidiagonal sums: A268837.
Cf. A268719 (the lower triangular section).
Cf. also A268725.

Programs

Formula

A(i,j) = A003188(A006068(i) + A006068(j)) = A003188(A268714(i,j)).
A(row,col) = A268820(A006068(row), (A006068(row)+col)).

A056559 Tetrahedron with T(t,n,k) = t - n; succession of growing finite triangles with declining values per row.

Original entry on oeis.org

0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Examples

			First triangle: [0]; second triangle: [1; 0 0]; third triangle: [2; 1 1; 0 0 0]; ...
		

Crossrefs

Together with A056558 and A056560 might enable reading "by antidiagonals" of cube arrays as 3-dimensional analog of A002262 and A025581 with square arrays.
Bisection (y-coordinates) of A332662.

Programs

  • Julia
    function a_list(N)
        a = Int[]
        for n in 1:N
            for j in ((k:-1:1) for k in 1:n)
                t = n - j[1]
                for m in j
                    push!(a, t)
    end end end; a end
    A = a_list(10) # Peter Luschny, Feb 19 2020
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A056559(n): return (m:=integer_nthroot(6*(n+1),3)[0])-(a:=nChai Wah Wu, Dec 11 2024

Formula

a(n) = A056556(n) - A056557(n).

A265345 Square array A(row,col): For row=0, A(0,col) = A265341(col), for row > 0, A(row,col) = A265342(A(row-1,col)).

Original entry on oeis.org

1, 3, 2, 7, 6, 4, 5, 10, 12, 8, 9, 22, 20, 24, 16, 21, 18, 28, 40, 48, 64, 13, 30, 36, 56, 80, 192, 32, 19, 26, 60, 72, 112, 160, 96, 184, 25, 14, 52, 120, 144, 224, 640, 552, 352, 11, 46, 76, 208, 240, 576, 448, 320, 1056, 704, 15, 58, 68, 136, 104, 480, 288, 1720, 1600, 2112, 1408
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array A(row,col) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
All the terms in the same column are either all divisible by 3, or none of them are.
Reducing A265342 to its constituent sequences gives A265342(n) = A263273(2*A263273(n)). Iterating this function k times starting from n reduces to (because A263273 is an involution, so pairs of them are canceled) to A263273((2^k)*A263273(n)).

Examples

			The top left corner of the array:
    1,    3,    7,    5,    9,   21,   13,   19,   25,   11,   15,    39, .
    2,    6,   10,   22,   18,   30,   26,   14,   46,   58,   66,    78, .
    4,   12,   20,   28,   36,   60,   52,   76,   68,   44,   84,   156, .
    8,   24,   40,   56,   72,  120,  208,  136,   88,  232,  168,   624, .
   16,   48,   80,  112,  144,  240,  104,  200,  496,  424,  336,   312, .
   64,  192,  160,  224,  576,  480,  520,  256,  344,  608,  672,  1560, .
   32,   96,  640,  448,  288, 1920, 1144,  512, 1984,  736, 1344,  3432, .
  184,  552,  320, 1720, 1656,  960, 2072, 1024, 1376, 4384, 5160,  6216, .
  352, 1056, 1600,  824, 3168, 4800, 3712, 6040, 5344, 2936, 2472, 11136, .
  ...
		

Crossrefs

Inverse: A265346.
Transpose: A265347.
Leftmost column: A264980.
Topmost row: A265341.
Row index: A265330 (zero-based), A265331 (one-based).
Column index: A265910 (zero-based), A265911 (one-based).
Cf. also A265342.
Related permutations: A263273, A265895.

Programs

Formula

For row=0, A(0,col) = A265341(col), for row>0, A(row,col) = A265342(A(row-1,col)).
A(row, col) = A263273((2^row) * A263273(A265341(col))). [The above reduces to this.]

A056560 Tetrahedron with T(t,n,k)=n-k; succession of growing finite triangles with increasing values towards bottom left.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Examples

			First triangle: [0]; second triangle: [0; 1 0]; third triangle: [0; 1 0; 2 1 0]; ...
		

Crossrefs

Together with A056558 and A056559 might enable reading "by antidiagonals" of cube arrays as 3-dimensional analog of A002262 and A025581 with square arrays.

Formula

a(n) = A056557(n) - A056558(n).

A072766 Transpose of A072764, 'cons' with arguments swapped.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 5, 14, 16, 8, 9, 15, 42, 19, 17, 10, 37, 43, 51, 44, 18, 11, 38, 121, 52, 126, 47, 20, 12, 39, 122, 149, 127, 135, 53, 21, 13, 40, 123, 150, 385, 136, 154, 56, 22, 23, 41, 124, 151, 386, 413, 155, 163, 60, 45, 24, 107, 125, 152, 387, 414, 475, 164
Offset: 0

Views

Author

Antti Karttunen, Jun 12 2002

Keywords

Crossrefs

Inverse permutation: A072767. a(n) = A069770(A072764(n)). Also transpose of A072764, i.e. a(n) = A072764(A038722(n)). Projection functions are A072772 & A072771. The sizes of the corresponding Catalan structures: A072768. The first column: A057548, the first row: A072795. Cf. also A025581, A002262.

Extensions

a(0)=0 prepended by Sean A. Irvine, Oct 25 2024
Previous Showing 41-50 of 155 results. Next