cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A360137 a(n) = V(A026430(n)), where V(1) = 1 and V(k) = A285953(k+1) for k >= 2.

Original entry on oeis.org

1, 5, 12, 14, 21, 23, 26, 33, 39, 41, 44, 50, 54, 59, 65, 68, 75, 77, 80, 86, 90, 95, 102, 105, 107, 113, 120, 123, 128, 132, 134, 141, 147, 149, 152, 158, 162, 167, 174, 177, 179, 185, 192, 194, 201, 203, 207, 212, 216, 221, 228, 230, 237, 239, 243, 248
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1)  v o u = (2, 6, 9, 10, 13, 15, 16, 19, 22, 24, 25, 28, 29, 32, 36, ...) = A360136
(2)  v' o u = (1, 5, 12, 14, 21, 23, 26, 33, 39, 41, 44, 50, 54, 59, 65, ...) = A360137
(3)  v o u' = (4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, ...) = A360138
(4)  v' o u' = (3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, ...) = A360139
		

Crossrefs

Cf. A026530, A359352, A285953, A359277 (intersections instead of results of composition), A359352-A360136, A360138-A360139.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[v[[u[[n]]]], {n, 1, zz}]      (* A360136 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]     (* A360137 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]     (* A360138 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]    (* A360139 *)

A360138 a(n) = 1 + A026430(A356133(n)).

Original entry on oeis.org

4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, 71, 74, 81, 85, 88, 94, 97, 101, 108, 112, 115, 119, 126, 129, 135, 139, 142, 146, 153, 157, 160, 166, 169, 173, 180, 184, 187, 191, 197, 200, 206, 211, 214, 220, 223, 227, 233, 236, 242, 247, 250
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1)  v o u = (2, 6, 9, 10, 13, 15, 16, 19, 22, 24, 25, 28, 29, 32, 36, ...) = A360136
(2)  v' o u = (1, 5, 12, 14, 21, 23, 26, 33, 39, 41, 44, 50, 54, 59, 65, ...) = A360137
(3)  v o u' = (4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, ...) = A360138
(4)  v' o u' = (3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, ...) = A360139
		

Crossrefs

Cf. A026530, A359352, A285953, A359277 (intersections instead of results of composition), A359352-A360136, A360138-A360139.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[v[[u[[n]]]], {n, 1, zz}]      (* A360136 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]     (* A360137 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]     (* A360138 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]    (* A360139 *)
  • Python
    def A360138(n): return (m:=3*n-(2 if (n-1).bit_count()&1 else 1))+(m-1>>1)+(m-1&1|(m.bit_count()&1^1))+1 # Chai Wah Wu, Mar 01 2023

A360395 Intersection of A026430 and A360394.

Original entry on oeis.org

1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, 66, 69, 73, 78, 81, 87, 91, 96, 99, 103, 108, 114, 117, 121, 126, 129, 135, 139, 144, 150, 153, 159, 163, 168, 171, 175, 180, 186, 189, 195, 199, 204, 210, 213, 217, 222, 225, 231, 235, 240, 246, 249, 255
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively.
For A360395, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u
v = u + 1 = A285954, except its initial 1
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Intersection[u, v]    (* A360394 *)
    Intersection[u, v1]   (* A360395 *)
    Intersection[u1, v]   (* A360396 *)
    Intersection[u1, v1]  (* A360397 *)

A360399 a(n) = A026430(1 + A360393(n)).

Original entry on oeis.org

1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, 73, 77, 82, 87, 90, 96, 99, 103, 109, 114, 117, 121, 128, 130, 136, 141, 144, 149, 154, 159, 162, 168, 171, 175, 181, 186, 189, 194, 199, 203, 209, 213, 216, 222, 225, 230, 235, 239, 245, 249
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A360403 a(n) = A360393(A026430(n)).

Original entry on oeis.org

1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, 66, 73, 76, 78, 85, 87, 94, 99, 103, 106, 112, 117, 121, 126, 129, 133, 139, 144, 148, 150, 157, 159, 166, 171, 175, 178, 184, 189, 193, 199, 202, 204, 210, 213, 220, 225, 229, 235, 238, 240, 246, 253
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).

Examples

			(1)  v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
(2)  v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
(3)  v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
(4)  v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
		

Crossrefs

Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360402, A360404, A360405.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Table[v[[u[[n]]]], {n, 1, zz}]    (* A360402 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]   (* A360403 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]   (* A360404 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]  (* A360405 *)
  • Python
    def A360393(n):
        if n < 3: return [0, 1, 2][n]
        return 3*n - 5 - (n-3).bit_count() % 2
    def A026430(n): return n+(n-1>>1)+(n-1&1|(n.bit_count()&1^1))
    def A360403(n): return A360393(A026430(n)) # Winston de Greef, Mar 24 2023

A001285 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and 2's.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

Or, follow a(0), ..., a(2^k-1) by its complement.
Equals limiting row of A161175. - Gary W. Adamson, Jun 05 2009
Parse A010060 into consecutive pairs: (01, 10, 10, 01, 10, 01, ...); then apply the rules: (01 -> 1; 10 ->2), obtaining (1, 2, 2, 1, 2, 1, 1, ...). - Gary W. Adamson, Oct 25 2010

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
  • A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010060 for 0, 1 version, which is really the main entry for this sequence; also A003159. A225186 (squares).
A026465 gives run lengths.
Cf. A010059 (1, 0 version).
Cf. A161175. - Gary W. Adamson, Jun 05 2009
Cf. A026430 (partial sums).
Boustrophedon transforms: A230958, A029885.

Programs

  • Haskell
    a001285 n = a001285_list !! n
    a001285_list = map (+ 1) a010060_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A001285 := proc(n) option remember; if n=0 then 1 elif n mod 2 = 0 then A001285(n/2) else 3-A001285((n-1)/2); fi; end;
    s := proc(k) local i, ans; ans := [ 1,2 ]; for i from 0 to k do ans := [ op(ans),op(map(n->if n=1 then 2 else 1 fi, ans)) ] od; RETURN(ans); end; t1 := s(6); A001285 := n->t1[n]; # s(k) gives first 2^(k+2) terms
  • Mathematica
    Nest[ Flatten@ Join[#, # /. {1 -> 2, 2 -> 1}] &, {1}, 7] (* Robert G. Wilson v, Feb 26 2005 *)
    a[n_] := Mod[Sum[Mod[Binomial[n, k], 2], {k, 0, n}], 3]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Jul 02 2019 *)
    ThueMorse[Range[0,120]]+1 (* Harvey P. Dale, May 07 2021 *)
  • PARI
    a(n)=1+subst(Pol(binary(n)),x,1)%2
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)%2)%3
    
  • PARI
    a(n)=hammingweight(n)%2+1 \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from itertools import islice
    def A001285_gen(): # generator of terms
        yield 1
        blist = [1]
        while True:
            c = [3-d for d in blist]
            blist += c
            yield from c
    A001285_list = list(islice(A001285_gen(),30)) # Chai Wah Wu, Nov 13 2022
    
  • Python
    def A001285(n): return 2 if n.bit_count()&1 else 1 # Chai Wah Wu, Mar 01 2023

Formula

a(2n) = a(n), a(2n+1) = 3 - a(n), a(0) = 1. Also, a(k+2^m) = 3 - a(k) if 0 <= k < 2^m.
a(n) = 1 + A010060(n).
a(n) = 2 - A010059(n) = 1/2*(3 - (-1)^A000120(n)). - Ralf Stephan, Jun 20 2003
a(n) = (Sum{k=0..n} binomial(n, k) mod 2) mod 3 = A001316(n) mod 3. - Benoit Cloitre, May 09 2004
G.f.: (3/(1 - x) - Product_{k>=0} (1 - x^(2^k)))/2. - Ilya Gutkovskiy, Apr 03 2019

A115384 Partial sums of Thue-Morse numbers A010060.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 15, 15, 16, 17, 17, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 23, 23, 24, 24, 25, 26, 26, 27, 27, 27, 28, 29, 29, 29, 30, 30, 31, 32, 32, 33, 33, 33, 34, 34, 35, 36, 36, 36, 37, 38, 38
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Nest[Flatten[#/.{0->{0,1},1->{1,0}}]&,{0},7]] (* Peter J. C. Moses, Apr 15 2013 *)
    Accumulate[ThueMorse[Range[0,100]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2017 *)
  • PARI
    a(n)=n\2 + (n%2 || hammingweight(n+1)%2==0) \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    def A115384(n): return (n>>1)+(n&1|((n+1).bit_count()&1^1)) # Chai Wah Wu, Mar 01 2023

Formula

a(n) = Sum_{k=0..n} A010060(k)^2.
a(n+1) = A115382(2n, n).
a(n)/n -> 1/2; a(n) = number of odious numbers <= n, see A000069. - Reinhard Zumkeller, Aug 26 2007, corrected by M. F. Hasler, May 22 2017.
a(n) = Sum_{i=1..n} (S2(n) mod 2), where S2 = binary weight; lim a(n)/n = 1/2. More generally, consider a(n) = Sum_{i=1..n} (F(Sk(n)) mod m), where Sk(n) is sum of digits of n, n in base k; F(t) is an arithmetic function; m integer. How does lim a(n)/n depend on F(t)? - Ctibor O. Zizka, Feb 25 2008
a(n) = n + 1 - A159481(n). - Reinhard Zumkeller, Apr 16 2009
a(n) = floor((n+1)/2)+(1+(-1)^n)*(1-(-1)^A000120(n))/4. - Vladimir Shevelev, May 27 2009
G.f.: (1/(1 - x)^2 - Product_{k>=1} (1 - x^(2^k)))/2. - Ilya Gutkovskiy, Apr 03 2019
a(n) = A026430(n+1) - n - 1. - Michel Dekking, Sep 17 2019
a(2n+1) = n+1 (see Hassan Tarfaoui link, Concours Général 1990). - Bernard Schott, Jan 21 2022

Extensions

Edited by M. F. Hasler, May 22 2017

A360393 Complement of A360392.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 15, 19, 22, 24, 27, 31, 34, 36, 40, 42, 45, 49, 51, 55, 58, 60, 64, 66, 69, 73, 76, 78, 81, 85, 87, 91, 94, 96, 99, 103, 106, 108, 112, 114, 117, 121, 124, 126, 129, 133, 135, 139, 142, 144, 148, 150, 153, 157, 159, 163, 166, 168, 171, 175
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    v = 2 + Accumulate[1 + ThueMorse /@ Range[0, 200]]; (* A360392 *)
    Complement[Range[Max[v]], v]    (* A360393 *)
  • PARI
    a(n) = if(n < 3, [1, 2][n], 3*n - 5 - hammingweight(n-3)%2) \\ Winston de Greef, Mar 27 2023
  • Python
    from itertools import islice
    def A360393_gen(): # generator of terms
        yield from (1,2)
        blist, s = [1], 3
        while True:
            c = [3-d for d in blist]
            blist += c
            for d in c:
                yield from range(s+1,s:=s+d)
    A360393_list = list(islice(A360393_gen(),30)) # Chai Wah Wu, Feb 22 2023
    

Formula

A360393(n) = A356133(n-2) + 2 for n>=3

A360405 a(n) = A360393(A356133(n)).

Original entry on oeis.org

2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, 124, 135, 142, 153, 163, 168, 180, 186, 195, 208, 217, 222, 231, 244, 249, 262, 271, 276, 285, 297, 307, 312, 324, 330, 339, 352, 361, 366, 375, 387, 394, 405, 414, 421, 432, 438, 447, 459, 466, 477
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).

Examples

			(1)  v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
(2)  v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
(3)  v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
(4)  v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
		

Crossrefs

Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360402, A360403, A360404.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v]; (* A360393 *)
    Table[v[[u[[n]]]], {n, 1, zz}]     (* A360402 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]    (* A360403 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]    (* A360404 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]   (* A360405 *)

A360139 a(n) = V(A356133(n)), where V(1) = 1 and V(k) = A285953(k+1) for k >= 2.

Original entry on oeis.org

3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, 125, 138, 143, 156, 165, 170, 183, 188, 198, 209, 219, 224, 234, 245, 252, 263, 273, 279, 288, 300, 309, 314, 327, 332, 342, 353, 363, 368, 378, 390, 395, 408, 416, 422, 435, 440, 450, 462, 467, 480
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1)  v o u = (2, 6, 9, 10, 13, 15, 16, 19, 22, 24, 25, 28, 29, 32, 36, ...) = A360136
(2)  v' o u = (1, 5, 12, 14, 21, 23, 26, 33, 39, 41, 44, 50, 54, 59, 65, ...) = A360137
(3)  v o u' = (4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, ...) = A360138
(4)  v' o u' = (3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, ...) = A360139
		

Crossrefs

Cf. A026530, A359352, A285953, A359277 (intersections instead of results of composition), A359352-A360138.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[v[[u[[n]]]], {n, 1, zz}]      (* A360136 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]     (* A360137 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]     (* A360138 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]    (* A360139 *)
Previous Showing 11-20 of 29 results. Next