cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A026527 a(n) = T(2*n, n-2), where T is given by A026519.

Original entry on oeis.org

1, 3, 14, 55, 231, 952, 3976, 16614, 69750, 293557, 1238952, 5240599, 22212645, 94318875, 401143304, 1708558480, 7286677479, 31113264579, 132994055090, 569048532612, 2437033824302, 10445705817063, 44807461337160, 192342179361800, 826205908069555, 3551172735996756, 15272395383833658
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-2] ];
    Table[a[n], {n,2,40}] (* G. C. Greubel, Dec 20 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(2*n,n-2) for n in (2..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = A026519(2*n, n-2).
a(n) = A026536(2*n, n-2).

Extensions

Terms a(20) onward added by G. C. Greubel, Dec 20 2021

A026525 a(n) = T(2*n, n), where T is given by A026519.

Original entry on oeis.org

1, 1, 5, 16, 65, 251, 1016, 4117, 16913, 69865, 290455, 1212905, 5085224, 21389824, 90226449, 381519416, 1616684241, 6863544233, 29187402749, 124305180842, 530108333515, 2263423401745, 9674857844129, 41396075156859, 177285394355336, 759895396193376, 3259667597627576, 13992851410449865
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[2 n, n] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 20 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(2*n, n) for n in (0..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = A026519(2*n, n).
a(n) = A026536(2*n, n).

Extensions

Terms a(20) onward added by G. C. Greubel, Dec 20 2021

A026526 a(n) = T(2n,n-1), T given by A026519.

Original entry on oeis.org

1, 2, 9, 32, 130, 516, 2107, 8632, 35703, 148390, 619850, 2598960, 10933507, 46124274, 195055005, 826617216, 3509650697, 14926011714, 63572290247, 271125967840, 1157705297385, 4948808238110, 21175676836110, 90692557152240, 388751132082600, 1667665994149376, 7159105163384127, 30753762496639504
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[2*n, n-1] ];
    Table[a[n], {n,40}] (* G. C. Greubel, Dec 20 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(2*n,n-1) for n in (1..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = A026519(2*n, n-1).
a(n) = A026536(2*n, n-1).

Extensions

Terms a(20) onward added by G. C. Greubel, Dec 20 2021

A026549 Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...

Original entry on oeis.org

1, 2, 6, 12, 36, 72, 216, 432, 1296, 2592, 7776, 15552, 46656, 93312, 279936, 559872, 1679616, 3359232, 10077696, 20155392, 60466176, 120932352, 362797056, 725594112, 2176782336, 4353564672, 13060694016, 26121388032, 78364164096, 156728328192, 470184984576, 940369969152
Offset: 0

Views

Author

Keywords

Comments

Appears to be the number of permutations p of {1,2,...,n} such that p(i)+p(i+1)>=n for every i=1,2,...,n-1 (if offset is 1). - Vladeta Jovovic, Dec 15 2003
Equals eigensequence of a triangle with 1's in even columns and (1,3,3,3,...) in odd columns. a(5) = 72 = (1, 3, 1, 3, 1, 1) dot (1, 1, 2, 6, 12, 36) = (1 + 3 + 2 + 18 + 12 + 36), where (1, 3, 1, 3, 1, 1) = row 5 of the generating triangle. - Gary W. Adamson, Aug 02 2010
Partial products of A010693. - Reinhard Zumkeller, Mar 29 2012
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
For n >= 2, a(n) is the least k > a(n-1) such that both k and a(n-2) + a(n-1) + k have exactly n prime factors, counted with multiplicity. - Robert Israel, Aug 06 2024

Examples

			G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - _Michael Somos_, Apr 09 2022
		

References

  • Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.

Crossrefs

Programs

  • Haskell
    a026549 n = a026549_list !! n
    a026549_list = scanl (*) 1 $ a010693_list
    -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    seq(seq(2^i*3^j, i=j..j+1),j=0..30); # Robert Israel, Aug 06 2024
  • Mathematica
    LinearRecurrence[{0,6},{1,2},30] (* Harvey P. Dale, May 29 2016 *)
  • PARI
    {a(n) = 6^(n\2) * (n%2+1)}; /* Michael Somos, Apr 09 2022 */
  • SageMath
    [(1+(n%2))*6^(n//2) for n in (0..30)] # G. C. Greubel, Apr 09 2022
    

Formula

Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
a(n) = 2*A026532(n), for n > 0.
G.f.: (1+2*x)/(1-6*x^2) - Paul Barry, Aug 25 2003
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - Vincenzo Librandi, Jun 08 2011
a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - Michael Somos, Apr 09 2022
Sum_{n>=0} 1/a(n) = 9/5. - Amiram Eldar, Feb 13 2023

Extensions

New definition from Ralf Stephan, Dec 01 2004

A026268 Triangle, T(n, k): T(n,k) = 1 for n < 3, T(3,1) = T(3,2) = T(3,3) = 2, T(n,0) = 1, T(n,1) = n-1, T(n,n) = T(n-1,n-2) + T(n-1,n-1), otherwise T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 4, 1, 4, 9, 14, 15, 10, 1, 5, 14, 27, 38, 39, 25, 1, 6, 20, 46, 79, 104, 102, 64, 1, 7, 27, 72, 145, 229, 285, 270, 166, 1, 8, 35, 106, 244, 446, 659, 784, 721, 436, 1, 9, 44, 149, 385, 796, 1349, 1889, 2164, 1941, 1157, 1, 10, 54, 202, 578, 1330, 2530, 4034, 5402, 5994, 5262, 3098
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of strings s(0)..s(n) such that s(n) = n-k, where s(0) = 0, s(1) = 1, |s(i)-s(i-1)| <= 1 for i >= 2; |s(2)-s(1)| = 1, and |s(3)-s(2)| = 1 if s(2) = 1.

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   2;
  1, 3,  5,   6,   4;
  1, 4,  9,  14,  15,  10;
  1, 5, 14,  27,  38,  39,   25;
  1, 6, 20,  46,  79, 104,  102,   64;
  1, 7, 27,  72, 145, 229,  285,  270,  166;
  1, 8, 35, 106, 244, 446,  659,  784,  721,  436;
  1, 9, 44, 149, 385, 796, 1349, 1889, 2164, 1941, 1157;
		

Crossrefs

Programs

  • Magma
    f:= func< n | n eq 2 select 1 else (n^2 -n -2)/2 >;
    function T(n,k) // T = A026268
      if k eq 0 or n lt 3 then return 1;
      elif k eq 1 then return n-1;
      elif k eq 2 then return f(n);
      elif k eq n then return T(n-1, n-2) + T(n-1, n-1);
      else return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 24 2022
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<3 || k==0, 1, If[k==1, n-1, If[k==2, (n^2-n-2)/2 + Boole[n==2], If[k==n, T[n-1, n-2] +T[n-1, n-1], T[n-1, k-2] + T[n-1, k-1] + T[n -1, k] ]]]];
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* corrected by G. C. Greubel, Sep 24 2022 *)
  • SageMath
    def T(n,k): # T = A026268
        if n<3 or k==0: return 1
        elif k==1: return n-1
        elif k==2: return (n^2 -n -2)//2 + int(n==2)
        elif k==n: return T(n-1, n-2) + T(n-1, n-1)
        else: return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 24 2022

Formula

From G. C. Greubel, Sep 24 2022: (Start)
T(n, 1) = A000027(n-1), n >= 1.
T(n, 2) = A212342(n-1), n >= 2.
T(n, n-1) = A026270(n), n >= 2.
T(n, n-2) = A026288(n), n >= 2.
T(n, n-3) = A026289(n), n >= 3.
T(n, n-4) = A026290(n), n >= 4.
T(n, n) = A026269(n), n >= 2.
T(n, floor(n/2)) = A026297(n), n >= 0.
T(2*n, n) = A026292(n).
T(2*n, n-1) = A026295(n), n >= 1.
T(2*n, n+1) = A026296(n), n >= 1.
T(2*n-1, n-1) = A026291(n), n >= 2.
T(3*n, n) = A026293(n), n >= 0.
T(4*n, n) = A026294(n), n >= 0.
Sum_{k=0..n} T(n, k) = A026299(n-1), n >= 3.(End)

Extensions

Updated by Clark Kimberling, Aug 29 2014
Indices of b-file corrected by Sidney Cadot, Jan 06 2023.

A026551 Expansion of 3*(1+2*x-2*x^2)/((1-x)*(1-6*x^2)).

Original entry on oeis.org

3, 9, 21, 57, 129, 345, 777, 2073, 4665, 12441, 27993, 74649, 167961, 447897, 1007769, 2687385, 6046617, 16124313, 36279705, 96745881, 217678233, 580475289, 1306069401, 3482851737, 7836416409, 20897110425, 47018498457
Offset: 0

Views

Author

Keywords

Comments

The even terms are the number of holes of SierpiƄski triangle-like fractals. The odd terms are the total number of holes and triangles. - Kival Ngaokrajang, Mar 30 2014
All terms are divisible by 3 (see g.f.). - Joerg Arndt, Dec 20 2014
Former title a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k) was incorrect. - G. C. Greubel, Apr 12 2022

Crossrefs

Programs

  • Magma
    [(3/5)*(-1 + 6^(1+Floor(n/2))*((n+1) mod 2) + 16*6^(Floor((n-1)/2))*(n mod 2)): n in [0..40]]; // G. C. Greubel, Apr 12 2022
    
  • Mathematica
    Table[(3/5)*(-1 +3*6^(n/2)*(1+(-1)^n) +8*6^((n-1)/2)*(1-(-1)^n)), {n, 0, 40}] (* G. C. Greubel, Apr 12 2022 *)
  • PARI
    Vec( 3*(1+2*x-2*x^2)/((1-x)*(1-6*x^2))+O(x^33)); \\ Joerg Arndt, Dec 20 2014
    
  • SageMath
    [(3/5)*(-1 + 6*6^(n/2)*((n+1)%2)  + 16*6^((n-1)/2)*(n%2)) for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

G.f.: 3*(1+2*x-2*x^2)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
From G. C. Greubel, Apr 12 2022: (Start)
a(n) = (3/5)*( -1 + 3*6^(n/2)*(1 + (-1)^n) + 8*6^((n-1)/2)*(1 - (-1)^n) ).
a(2*n) = (3/5)*(6^(n+1) - 1).
a(2*n+1) = (3/5)*(16*6^n -1).
a(n) = a(n-1) + 6*a(n-2) - a(n-3). (End)

Extensions

Name corrected by G. C. Greubel, Apr 12 2022
Previous Showing 21-26 of 26 results.