cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A182715 Triangle read by rows in which row n lists in nonincreasing order the smallest part of every partition of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Dec 01 2010

Keywords

Comments

Triangle read by rows in which row n lists the smallest parts of all partitions of n in the order produced by the shell model of partitions of A138121.
Also, row n lists the "filler parts" of all partition of n. For more information see A182699.
Row n has length A000041(n). Row sums give A046746. Column 1 gives A001477. The last A000041(n-1) terms of row n are ones, n >= 1.

Examples

			For row 10, see the illustration of the link.
Triangle begins:
  0,
  1,
  2,1,
  3,1,1,
  4,2,1,1,1,
  5,2,1,1,1,1,1,
  6,3,2,2,1,1,1,1,1,1,1,
  7,3,2,2,1,1,1,1,1,1,1,1,1,1,1,
  8,4,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  9,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  ...
		

Crossrefs

Mirror of triangle A196931.

Extensions

Name simplified and more terms from Omar E. Pol, Oct 21 2011

A026835 Triangular array read by rows: T(n,k) = number of partitions of n into distinct parts in which every part is >=k, for k=1,2,...,n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 12, 7, 4, 3, 2, 1, 1, 1, 1, 1, 1, 15, 8, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 18, 10, 6, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 22, 12, 7, 4, 3, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,1)=A000009(n), T(n,2)=A025147(n) for n>1, T(n,3)=A025148(n) for n>2, T(n,4)=A025149(n) for n>3.
A219922(n) = smallest number of row containing n. - Reinhard Zumkeller, Dec 01 2012

Examples

			From _Michael De Vlieger_, Aug 03 2020: (Start)
Table begins:
   1
   1   1
   2   1   1
   2   1   1   1
   3   2   1   1   1
   4   2   1   1   1   1
   5   3   2   1   1   1   1
   6   3   2   1   1   1   1   1
   8   5   3   2   1   1   1   1   1
  10   5   3   2   1   1   1   1   1   1
  12   7   4   3   2   1   1   1   1   1   1
  15   8   5   3   2   1   1   1   1   1   1   1
  ... (End)
		

Crossrefs

Programs

  • Haskell
    import Data.List (tails)
    a026835 n k = a026835_tabl !! (n-1) !! (k-1)
    a026835_row n = a026835_tabl !! (n-1)
    a026835_tabl = map
       (\row -> map (p $ last row) $ init $ tails row) a002260_tabl
       where p 0      _ = 1
             p _     [] = 0
             p m (k:ks) = if m < k then 0 else p (m - k) ks + p m ks
    -- Reinhard Zumkeller, Dec 01 2012
  • Mathematica
    Nest[Function[{T, n, r}, Append[T, Table[1 + Total[T[[##]] & @@@ Select[r, #[[-1]] > k + 1 &]], {k, 0, n}]]] @@ {#1, #2, Transpose[1 + {#2 - #3, #3}]} & @@ {#1, #2, Range[Ceiling[#2/2] - 1]} & @@ {#, Length@ #} &, {{1}}, 12] // Flatten (* Michael De Vlieger, Aug 03 2020 *)

Formula

G.f.: Sum_{k>=1} (y^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 25 2003
T(n, k) = 1 + Sum(T(i, j): i>=j>k and i+j=n+1). - Reinhard Zumkeller, Jan 01 2003
T(n, k) > 1 iff 2*k < n. - Reinhard Zumkeller, Jan 01 2003

A026832 Number of partitions of n into distinct parts, the least being odd.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 8, 10, 12, 14, 18, 21, 24, 30, 36, 42, 50, 58, 68, 80, 93, 108, 126, 146, 168, 194, 224, 256, 294, 336, 384, 439, 500, 568, 646, 732, 828, 938, 1060, 1194, 1348, 1516, 1704, 1916, 2149, 2408, 2698, 3018, 3372, 3766, 4202, 4682
Offset: 0

Views

Author

Keywords

Comments

Fine's numbers L(n).
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(7)=4 because we have [3,2,1,1], [2,2,2,1], [2,1,1,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 29 2006

Examples

			a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).

Crossrefs

Programs

  • Haskell
    a026832 n = p 1 n where
       p _ 0 = 1
       p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
    -- Reinhard Zumkeller, Jun 14 2012
  • Maple
    g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Emeric Deutsch, Mar 29 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 `if`(n=0, 0, b(n$2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]]  (* Jean-François Alcover, Apr 05 2011, after Emeric Deutsch *)
    Join[{0},Table[Length[Select[IntegerPartitions[n],OddQ[#[[-1]]]&&Max[Tally[#][[All,2]]] == 1&]],{n,60}]] (* Harvey P. Dale, May 14 2022 *)

Formula

G.f.: Sum_{k>=1} ((-1)^(k+1)*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{ k >= 1 } x^(k*(k+1)/2)/((1+x^k)*Product_{i=1..k} (1-x^i) ). - Vladeta Jovovic, Aug 10 2004
(1 + Sum_{n >= 1} a(n)q^n )*(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)) = Sum_{n >= 1} (-1)^n*q^((3*n^2+n)/2)/(1+q^n). [Fine]
G.f.: Sum_{k>=1} x^(2k-1)*Product_{j>=2k} (1 + x^j). - Emeric Deutsch, Mar 29 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Emeric Deutsch, Mar 29 2006
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019

A299773 a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.

Original entry on oeis.org

1, 2, 3, 9, 7, 48, 15, 119, 72, 269, 56, 2740, 101, 1163, 1208, 5218, 297, 24319, 490, 42150, 6669, 14098, 1255, 792335, 5564, 42501, 30585, 432413, 4565, 4513067, 6842, 1251217, 122818, 317297, 124253, 54782479, 21637, 802541, 445414, 48590725, 44583
Offset: 1

Views

Author

Omar E. Pol, Mar 25 2018

Keywords

Comments

If n is a noncomposite number (that is, 1 or prime), then a(n) = A000041(n).
For n >= 3, p(sigma(n-2)) < a(n) <= p(sigma(n-1)), where p(n) = A000041(n) and sigma(n) = A000203(n).

Examples

			For n = 4 the sum of the divisors of 4 is 1 + 2 + 4 = 7. Then we have that, in list of colexicographically ordered partitions of 7, the divisors of 4 are in the 9th partition, so a(4) = 9 (see below):
------------------------------------------------------
   k        Diagram        Partitions of 7
------------------------------------------------------
         _ _ _ _ _ _ _
   1    |_| | | | | | |    [1, 1, 1, 1, 1, 1, 1]
   2    |_ _| | | | | |    [2, 1, 1, 1, 1, 1]
   3    |_ _ _| | | | |    [3, 1, 1, 1, 1]
   4    |_ _|   | | | |    [2, 2, 1, 1, 1]
   5    |_ _ _ _| | | |    [4, 1, 1, 1]
   6    |_ _ _|   | | |    [3, 2, 1, 1]
   7    |_ _ _ _ _| | |    [5, 1, 1]
   8    |_ _|   |   | |    [2, 2, 2, 1]
   9    |_ _ _ _|   | |    [4, 2, 1]       <---- Divisors of 4
  10    |_ _ _|     | |    [3, 3, 1]
  11    |_ _ _ _ _ _| |    [6, 1]
  12    |_ _ _|   |   |    [3, 2, 2]
  13    |_ _ _ _ _|   |    [5, 2]
  14    |_ _ _ _|     |    [4, 3]
  15    |_ _ _ _ _ _ _|    [7]
.
		

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := b[n, k] = If[k < 1 || k > n, 0, If[n == k, 1, b[n, k + 1] + b[n - k, k]]];
    PartIndex[v_] := Module[{s = 1, t = 0}, For[i = Length[v], i >= 1, i--, t += v[[i]]; s += b[t, If[i == 1, 1, v[[i - 1]]]] - b[t, v[[i]]]]; s];
    a[n_] := PartIndex[Divisors[n]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 27 2019, after Andrew Howroyd *)
  • PARI
    a(n)={my(d=divisors(n)); vecsearch(vecsort(partitions(vecsum(d))), d)} \\ Andrew Howroyd, Jul 15 2018
    
  • PARI
    \\ here b(n,k) is A026807.
    b(n,k)=polcoeff(1/prod(i=k, n, 1-x^i + O(x*x^n)), n)
    PartIndex(v)={my(s=1,t=0); forstep(i=#v, 1, -1, t+=v[i]; s+=b(t, if(i==1, 1, v[i-1])) - b(t, v[i])); s}
    a(n)=PartIndex(divisors(n)); \\ Andrew Howroyd, Jul 15 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jul 15 2018

A057623 a(n) = n! * (sum of reciprocals of all parts in unrestricted partitions of n).

Original entry on oeis.org

1, 5, 29, 218, 1814, 18144, 196356, 2427312, 32304240, 475637760, 7460546400, 127525829760, 2302819079040, 44659367020800, 911770840108800, 19784985947596800, 449672462639769600, 10790180876185804800, 270071861749240320000, 7094011359005190144000
Offset: 1

Views

Author

Leroy Quet, Oct 09 2000

Keywords

Examples

			The unrestricted partitions of 3 are 1 + 1 + 1, 1 + 2 and 3. So a(3) = 3! *(1 + 1 + 1 + 1 + 1/2 + 1/3) = 29.
		

Crossrefs

Column 1 of A210590.
Cf. A103738.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, (p-> p+[0, p[1]/i])(b(n-i, i)))))
        end:
    a:= n-> n!*b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 11 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[ {p}, p + {0, p[[1]]/i}][b[n-i, i]]]]]; a[n_] := n!*b[n, n][[2]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[n!*Sum[DivisorSigma[1, k]*PartitionsP[n - k]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, May 29 2018 *)
  • Maxima
    S(n,m):=(if n=m then 1 else if nVladimir Kruchinin, Sep 10 2014 */
    
  • PARI
    {a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-1-t)), n), 1)} \\ Seiichi Manyama, Nov 07 2020

Formula

n! *sum_{k=1 to n} [sigma(k) p(n-k) /k], where sigma(n) = sum of positive divisors of n and p(n) = number of unrestricted partitions of n.
a(n) = P(n,1), where P(n,m) = P(n,m+1)+S(n-m,m)*n!/m+n!/(n-m)!*P(n-m,m)), P(n,n)=(n-1)!, P(n,m)=0 for m>n, S(n,m) is triangle of A026807. - Vladimir Kruchinin, Sep 10 2014

A027199 Triangular array T read by rows: T(n,k) = number of partitions of n into an odd number of parts, each >=k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 8, 2, 1, 1, 1, 1, 1, 10, 3, 1, 1, 1, 1, 1, 1, 16, 4, 2, 1, 1, 1, 1, 1, 1, 20, 6, 2, 1, 1, 1, 1, 1, 1, 1, 29, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 66, 17, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   2,  1, 1;
   2,  1, 1, 1;
   4,  1, 1, 1, 1;
   5,  2, 1, 1, 1, 1;
   8,  2, 1, 1, 1, 1, 1;
  10,  3, 1, 1, 1, 1, 1, 1;
  16,  4, 2, 1, 1, 1, 1, 1, 1;
  20,  6, 2, 1, 1, 1, 1, 1, 1, 1;
  29,  7, 3, 1, 1, 1, 1, 1, 1, 1, 1;
  37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • PARI
    T(n, k) = polcoef(x^k*sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i+1, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023

Formula

T(n, k) = Sum{O(n, i)}, k<=i<=n, O given by A027185.
T(n,k) + A027200(n,k) = A026807(n,k). - R. J. Mathar, Oct 18 2019
G.f. of column k: x^k * Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i+1} (1-x^j). - Seiichi Manyama, May 15 2023

Extensions

More terms from Seiichi Manyama, May 15 2023

A027200 Triangular array T read by rows: T(n,k) = number of partitions of n into an even number of parts, each >=k.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 1, 0, 0, 0, 6, 2, 1, 0, 0, 0, 7, 2, 1, 0, 0, 0, 0, 12, 4, 2, 1, 0, 0, 0, 0, 14, 4, 2, 1, 0, 0, 0, 0, 0, 22, 6, 3, 2, 1, 0, 0, 0, 0, 0, 27, 7, 3, 2, 1, 0, 0, 0, 0, 0, 0, 40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 69, 17, 7, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			 Triangle begins:
   0;
   1,  0;
   1,  0, 0;
   3,  1, 0, 0;
   3,  1, 0, 0, 0;
   6,  2, 1, 0, 0, 0;
   7,  2, 1, 0, 0, 0, 0;
  12,  4, 2, 1, 0, 0, 0, 0;
  14,  4, 2, 1, 0, 0, 0, 0, 0;
  22,  6, 3, 2, 1, 0, 0, 0, 0, 0;
  27,  7, 3, 2, 1, 0, 0, 0, 0, 0, 0;
  40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0;
  49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • PARI
    T(n, k) = polcoef(sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023

Formula

T(n, k) = Sum{E(n, i)}, k<=i<=n, E given by A027186.
T(n,k) + A027199(n,k) = A026807(n,k). - R. J. Mathar, Oct 18 2019
G.f. of column k: Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i} (1-x^j). - Seiichi Manyama, May 15 2023

Extensions

More terms from Seiichi Manyama, May 15 2023
Previous Showing 21-27 of 27 results.