cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 206 results. Next

A340607 Number of factorizations of n into an odd number of factors > 1, the greatest of which is odd.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 1, 2, 2, 0, 1, 3, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 0, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2021

Keywords

Examples

			The a(n) factorizations for n = 27, 84, 108, 180, 252, 360, 432:
  27     2*6*7   2*6*9      4*5*9      4*7*9      5*8*9       6*8*9
  3*3*3  3*4*7   3*4*9      2*2*45     6*6*7      2*4*45      2*8*27
         2*2*21  2*2*27     2*6*15     2*2*63     3*8*15      4*4*27
                 2*2*3*3*3  3*4*15     2*6*21     4*6*15      2*2*2*6*9
                            2*2*3*3*5  3*4*21     2*12*15     2*2*3*4*9
                                       2*2*3*3*7  2*2*2*5*9   2*2*2*2*27
                                                  2*3*3*4*5   2*2*2*2*3*3*3
                                                  2*2*2*3*15
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of odd length only is A339890.
The case of all odd factors is A340102.
The version for partitions is A340385.
The version for prime indices is A340386.
The case of odd maximum only is A340831.
A000009 counts partitions into odd parts (A066208).
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A078408 counts odd-length partitions into odd numbers (A300272).
A316439 counts factorizations by sum and length.
A340101 counts factorizations (into odd factors = of odd numbers).
A340832 counts factorizations whose least part is odd.
A340854/A340855 lack/have a factorization with odd minimum.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Max@@#]&]],{n,100}]
  • PARI
    A340607(n, m=n, k=0, grodd=0) = if(1==n, k, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(grodd||(d%2)), s += A340607(n/d, d, 1-k, bitor(1,grodd)))); (s)); \\ Antti Karttunen, Dec 13 2021

Extensions

Data section extended up to 108 terms by Antti Karttunen, Dec 13 2021

A340854 Numbers that cannot be factored into factors > 1, the least of which is odd.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 44, 46, 52, 58, 62, 64, 68, 74, 76, 82, 86, 88, 92, 94, 104, 106, 116, 118, 122, 124, 128, 134, 136, 142, 146, 148, 152, 158, 164, 166, 172, 178, 184, 188, 194, 202, 206, 212, 214, 218, 226, 232, 236, 244
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Consists of 1 and all numbers that are even and have no odd divisor 1 < d <= n/d.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}              44: {1,1,5}          106: {1,16}
      2: {1}             46: {1,9}            116: {1,1,10}
      4: {1,1}           52: {1,1,6}          118: {1,17}
      6: {1,2}           58: {1,10}           122: {1,18}
      8: {1,1,1}         62: {1,11}           124: {1,1,11}
     10: {1,3}           64: {1,1,1,1,1,1}    128: {1,1,1,1,1,1,1}
     14: {1,4}           68: {1,1,7}          134: {1,19}
     16: {1,1,1,1}       74: {1,12}           136: {1,1,1,7}
     20: {1,1,3}         76: {1,1,8}          142: {1,20}
     22: {1,5}           82: {1,13}           146: {1,21}
     26: {1,6}           86: {1,14}           148: {1,1,12}
     28: {1,1,4}         88: {1,1,1,5}        152: {1,1,1,8}
     32: {1,1,1,1,1}     92: {1,1,9}          158: {1,22}
     34: {1,7}           94: {1,15}           164: {1,1,13}
     38: {1,8}          104: {1,1,1,6}        166: {1,23}
For example, the factorizations of 88 are (2*2*2*11), (2*2*22), (2*4*11), (2*44), (4*22), (8*11), (88), none of which has odd minimum, so 88 is in the sequence.
		

Crossrefs

The version looking at greatest factor is A000079.
The version for twice-balanced is A340656, with complement A340657.
These factorization are counted by A340832.
The complement is A340855.
A033676 selects the maximum inferior divisor.
A038548 counts inferior divisors.
A055396 selects the least prime index.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A024429 counts set partitions of odd length.
A026424 lists numbers with odd Omega.
A066208 lists Heinz numbers of partitions into odd parts.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.

Programs

  • Mathematica
    Select[Range[100],Function[n,n==1||EvenQ[n]&&Select[Rest[Divisors[n]],OddQ[#]&&#<=n/#&]=={}]]

A347445 Number of integer partitions of n with integer reverse-alternating product.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 24, 32, 40, 50, 62, 77, 99, 115, 151, 170, 224, 251, 331, 360, 481, 517, 690, 728, 980, 1020, 1379, 1420, 1918, 1962, 2643, 2677, 3630, 3651, 4920, 4926, 6659, 6625, 8931, 8853, 11905, 11781, 15805, 15562, 20872, 20518
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (421)      (422)
                                     (2211)    (511)      (611)
                                     (21111)   (22111)    (2222)
                                     (111111)  (31111)    (3311)
                                               (1111111)  (22211)
                                                          (41111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version is A347442, unreversed A347437.
Allowing any reverse-alternating product <= 1 gives A347443.
Restricting to odd length gives A347444, ranked by A347453.
The unreversed version is A347446, ranked by A347457.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347454.
A000041 counts partitions, with multiplicative version A001055.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts factorizations with alternating product > 1, reverse A347705.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[revaltprod[#]]&]],{n,0,30}]

A237363 Number of partitions of n for which 2*(number of distinct parts) <= (number of parts).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 10, 13, 20, 26, 39, 50, 71, 87, 121, 156, 208, 265, 348, 440, 566, 712, 906, 1131, 1424, 1766, 2224, 2738, 3390, 4168, 5130, 6266, 7664, 9312, 11332, 13723, 16603, 20004, 24112, 28942, 34708, 41522, 49612, 59031, 70308, 83479, 98992
Offset: 0

Views

Author

Clark Kimberling, Feb 06 2014

Keywords

Comments

a(n) + A237365(n) = A000041(n).
Also the number of integer partitions of n whose median difference is 0. For example, the partition (2,2,2,1,1) is counted because its multiset of differences {0,0,0,1} has median 0. - Gus Wiseman, Mar 18 2023

Examples

			Among the 22 partitions of 8, these qualify:  [5,1,1,1], [4,4], [4,1,1,1,1], [3,3,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1], and the remaining 12 do not, so that a(8) = 10.
		

Crossrefs

These partitions have ranks A361204.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts, reverse A058398.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    z = 50; t = Map[Length[Select[IntegerPartitions[#], 2*Length[DeleteDuplicates[#]] <= Length[#] &]] &, Range[z]] (*A237363*)
    Table[PartitionsP[n] - t[[n]], {n, 1, z}] (*A237365*) (* Peter J. C. Moses, Feb 06 2014 *)
    Table[Length[Select[IntegerPartitions[n],Median[Differences[#]]==0&]],{n,0,30}] (* Gus Wiseman, Mar 18 2023 *)

A340855 Numbers that can be factored into factors > 1, the least of which is odd.

Original entry on oeis.org

3, 5, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

These are numbers that are odd or have an odd divisor 1 < d <= n/d.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}          27: {2,2,2}      48: {1,1,1,1,2}
     5: {3}          29: {10}         49: {4,4}
     7: {4}          30: {1,2,3}      50: {1,3,3}
     9: {2,2}        31: {11}         51: {2,7}
    11: {5}          33: {2,5}        53: {16}
    12: {1,1,2}      35: {3,4}        54: {1,2,2,2}
    13: {6}          36: {1,1,2,2}    55: {3,5}
    15: {2,3}        37: {12}         56: {1,1,1,4}
    17: {7}          39: {2,6}        57: {2,8}
    18: {1,2,2}      40: {1,1,1,3}    59: {17}
    19: {8}          41: {13}         60: {1,1,2,3}
    21: {2,4}        42: {1,2,4}      61: {18}
    23: {9}          43: {14}         63: {2,2,4}
    24: {1,1,1,2}    45: {2,2,3}      65: {3,6}
    25: {3,3}        47: {15}         66: {1,2,5}
For example, 72 is in the sequence because it has three suitable factorizations: (3*3*8), (3*4*6), (3*24).
		

Crossrefs

The version looking at greatest factor is A057716.
The version for twice-balanced is A340657, with complement A340656.
These factorization are counted by A340832.
The complement is A340854.
A033676 selects the maximum inferior divisor.
A038548 counts inferior divisors, listed by A161906.
A055396 selects the least prime index.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A024429 counts set partitions of odd length.
A026424 lists numbers with odd Omega.
A066208 lists Heinz numbers of partitions into odd parts.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.
A332304 counts strict compositions of odd length.
A340692 counts partitions of odd rank.

Programs

  • Mathematica
    Select[Range[100],Function[n,n>1&&(OddQ[n]||Select[Rest[Divisors[n]],OddQ[#]&&#<=n/#&]!={})]]

A361856 Positive integers whose prime indices satisfy (maximum) = 2*(median).

Original entry on oeis.org

12, 24, 42, 48, 60, 63, 72, 96, 126, 130, 140, 144, 189, 192, 195, 252, 266, 288, 308, 325, 330, 360, 378, 384, 399, 420, 432, 495, 546, 567, 572, 576, 588, 600, 630, 638, 650, 665, 756, 768, 819, 864, 882, 884, 931, 945, 957, 962, 975, 1122, 1134, 1152, 1190
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
These are Heinz numbers of partitions satisfying (maximum) = 2*(median).

Examples

			The terms together with their prime indices begin:
    12: {1,1,2}
    24: {1,1,1,2}
    42: {1,2,4}
    48: {1,1,1,1,2}
    60: {1,1,2,3}
    63: {2,2,4}
    72: {1,1,1,2,2}
    96: {1,1,1,1,1,2}
   126: {1,2,2,4}
   130: {1,3,6}
   140: {1,1,3,4}
   144: {1,1,1,1,2,2}
The prime indices of 126 are {1,2,2,4}, with maximum 4 and median 2, so 126 is in the sequence.
The prime indices of 308 are {1,1,4,5}, with maximum 5 and median 5/2, so 308 is in the sequence.
		

Crossrefs

The LHS (greatest prime index) is A061395.
The RHS (twice median) is A360005, distinct A360457.
These partitions are counted by A361849.
For mean instead of median we have A361855, counted by A361853.
For minimum instead of median we have A361908, counted by A118096.
For length instead of median we have A361909, counted by A237753.
A000975 counts subsets with integer median.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]==2*Median[prix[#]]&]

Formula

A061395(a(n)) = 2*A360005(a(n)).

A363740 Number of integer partitions of n whose median appears more times than any other part, i.e., partitions containing a unique mode equal to the median.

Original entry on oeis.org

1, 2, 2, 4, 5, 7, 10, 15, 18, 26, 35, 46, 61, 82, 102, 136, 174, 224, 283, 360, 449, 569, 708, 883, 1089, 1352, 1659, 2042, 2492, 3039, 3695, 4492, 5426, 6555, 7889, 9482, 11360, 13602, 16231, 19348, 23005, 27313, 32364, 38303, 45227, 53341, 62800, 73829
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (3221)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For mean instead of mode we have A240219, see A359894, A359889, A359895, A359897, A359899.
Including mean also gives A363719, ranks A363727.
For mean instead of median we have A363723, see A363724, A363731.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.
A362608 counts partitions with a unique mode, ranks A356862.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],{Median[#]}==modes[#]&]],{n,30}]

A238478 Number of partitions of n whose median is a part.

Original entry on oeis.org

1, 2, 2, 4, 5, 8, 11, 17, 22, 32, 43, 59, 78, 105, 136, 181, 233, 302, 386, 496, 626, 796, 999, 1255, 1564, 1951, 2412, 2988, 3674, 4516, 5524, 6753, 8211, 9984, 12086, 14617, 17617, 21211, 25450, 30514, 36475, 43550, 51869, 61707, 73230, 86821, 102706
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

Also the number of integer partitions of n with a unique middle part. This means that either the length is odd or the two middle parts are equal. For example, the partition (4,3,2,1) has middle parts {2,3} so is not counted under a(10), but (3,2,2,1) has middle parts {2,2} so is counted under a(8). - Gus Wiseman, May 13 2023

Examples

			a(6) counts these partitions:  6, 411, 33, 321, 3111, 222, 21111, 111111.
		

Crossrefs

For mean instead of median we have A237984, ranks A327473.
The complement is counted by A238479, ranks A362617.
These partitions have ranks A362618.
A000041 counts integer partitions.
A325347 counts partitions with integer median, complement A307683.
A359893/A359901/A359902 count partitions by median.
A359908 ranks partitions with integer median, complement A359912.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Median[p]]], {n, 40}]

Formula

a(n) + A238479(n) = A000041(n).
For all n, a(n) >= A027193(n) (because when a partition of n has an odd number of parts, its median is simply the part at the middle). - Antti Karttunen, Feb 27 2014
a(n) = A078408(n-1) - A282893(n). - Mathew Englander, May 24 2023

A340385 Number of integer partitions of n into an odd number of parts, the greatest of which is odd.

Original entry on oeis.org

1, 0, 2, 0, 3, 1, 6, 3, 10, 7, 18, 15, 30, 28, 51, 50, 82, 87, 134, 145, 211, 235, 331, 375, 510, 586, 779, 901, 1172, 1366, 1750, 2045, 2581, 3026, 3778, 4433, 5476, 6430, 7878, 9246, 11240, 13189, 15931, 18670, 22417, 26242, 31349, 36646, 43567, 50854
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2021

Keywords

Examples

			The a(3) = 2 through a(10) = 7 partitions:
  3     5       321   7         332     9           532
  111   311           322       521     333         541
        11111         331       32111   522         721
                      511               531         32221
                      31111             711         33211
                      1111111           32211       52111
                                        33111       3211111
                                        51111
                                        3111111
                                        111111111
		

Crossrefs

Partitions of odd length are counted by A027193, ranked by A026424.
Partitions with odd maximum are counted by A027193, ranked by A244991.
The Heinz numbers of these partitions are given by A340386.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A000009 counts partitions into odd parts, ranked by A066208.
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A101707 counts partitions with odd rank.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]*Max[#]]&]],{n,30}]

A347461 Number of distinct possible alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 12, 16, 19, 23, 27, 34, 41, 49, 57, 67, 78, 91, 106, 125, 147, 166, 187, 215, 245, 277, 317, 357, 405, 460, 524, 592, 666, 740, 829, 928, 1032, 1147, 1273, 1399, 1555, 1713, 1892, 2087, 2298, 2523, 2783, 3070, 3383, 3724, 4104, 4504
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			Partitions representing each of the a(7) = 10 alternating products are:
     (7) -> 7
    (61) -> 6
    (52) -> 5/2
   (511) -> 5
    (43) -> 4/3
   (421) -> 2
  (4111) -> 4
   (331) -> 1
   (322) -> 3
  (3211) -> 3/2
		

Crossrefs

The version for alternating sum is A004526.
Counting only integers gives A028310, reverse A347707.
The version for factorizations is A347460, reverse A038548.
The reverse version is A347462.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A122768 counts distinct submultisets of partitions.
A126796 counts complete partitions.
A293627 counts knapsack factorizations by sum.
A301957 counts distinct subset-products of prime indices.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A304793 counts distinct positive subset-sums of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@IntegerPartitions[n]]],{n,0,30}]
Previous Showing 61-70 of 206 results. Next