cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 82 results. Next

A068255 1/5 the number of colorings of an n X n square array with 5 colors.

Original entry on oeis.org

1, 52, 28564, 165770032, 10164078082036, 6584229526795818280, 45062665956031451017237456, 3258395057698765483724093981321824, 2489232886416012985921659124731697904597044, 20091032492258710696689787524926465967570325433558752
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(8)-a(10) from Alois P. Heinz, Apr 27 2012

A068256 1/6 the number of colorings of an n X n square array with 6 colors.

Original entry on oeis.org

1, 105, 194485, 6354787485, 3662978221194885, 37246546285522069805565, 6681224184095576349599961437005, 21141920893108925844961568245788270386085, 1180188030501408210062775052100916976604905321333565, 1162187850685436026547128866816039344195930156602955871508107885
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(8)-a(10) from Alois P. Heinz, Apr 27 2012

A068257 1/7 the number of colorings of an n X n square array with 7 colors.

Original entry on oeis.org

1, 186, 923526, 122408393436, 433110977725751106, 40908457493732914322944536, 103146129375410533061371714364918916, 6942544711174164051575906086886643368922134556, 12474132532762777585883439690925675118905860580968258566406
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(7)-a(9) from Alois P. Heinz, Apr 27 2012

A068258 1/8 the number of colorings of an n X n square array with 8 colors.

Original entry on oeis.org

1, 301, 3418807, 1465295106499, 23698346512668445387, 14462834689097706163375677127, 333066712033498255371201983520013525951, 289435280548175417311368841643540798029239265418611, 9491047284937011500293532002379383630495589849878668222747216079
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(6)-a(9) from Alois P. Heinz, Apr 27 2012

A167963 a(n) = n*(n^5 + 1)/2.

Original entry on oeis.org

0, 1, 33, 366, 2050, 7815, 23331, 58828, 131076, 265725, 500005, 885786, 1492998, 2413411, 3764775, 5695320, 8388616, 12068793, 17006121, 23522950, 32000010, 42883071, 56689963, 74017956, 95551500, 122070325, 154457901, 193710258, 240945166, 297411675
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n*(n^m + 1)/2: A001477 (m=0), A000217 (m=1), A006003 (m=2), A027441 (m=3), A021003 (m=4), this sequence (m=5), A168029 (m=6), A168067 (m=7), A168116 (m=8), A168118 (m=9), A168119 (m=10).

Programs

  • Magma
    [n*(n^5+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 10 2014
    
  • Maple
    A167963:=n->n*(n^5+1)/2; seq(A167963(n), n=0..100); # Wesley Ivan Hurt, Nov 23 2013
  • Mathematica
    Table[n(n^5+1)/2, {n,0,100}] (* Wesley Ivan Hurt, Nov 23 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,33,366,2050,7815,23331},30] (* Harvey P. Dale, Dec 09 2014 *)
    CoefficientList[Series[x (1 + 26 x + 156 x^2 + 146 x^3 + 31 x^4) / (1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2014 *)
  • SageMath
    [n*(n^5+1)/2 for n in range(41)] # G. C. Greubel, Jan 17 2023

Formula

G.f.: x*(1 + 26*x + 156*x^2 + 146*x^3 + 31*x^4)/(1-x)^7. - Vincenzo Librandi, Dec 10 2014
E.g.f.: (1/2)*x*(2 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Jan 17 2023

A068240 1/2 the number of colorings of a 4 X 4 square array with n colors.

Original entry on oeis.org

1, 3906, 3000366, 414425080, 19064362455, 428429377026, 5861180425996, 55823546748096, 403783634784285, 2353615149832210, 11531349080992026, 48981767072238936, 184656623163700051, 629125059062885490, 1964980839044519640, 5691311662142685376
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n*(n-1)*(17493+(-94782+(251492+(-430857+(529770+(-492434 +(355622+(-202160+(90723+(-31939+(8675+(-1762+(253 +(-23+n)*n)*n) *n)*n)*n)*n) *n)*n) *n)*n) *n)*n)*n) /2:
    seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012

Formula

From Alois P. Heinz, Apr 27 2012 (Start)
G.f.: -(2507986*x^14 +349887529*x^13 +12282125725*x^12 +158263444274*x^11 +896159384816*x^10 +2455337616143*x^9 +3417678462327*x^8 +2453922059100*x^7 +895941969162*x^6 +158666067383*x^5 +12424532171*x^4 +363949394*x^3 +2934100*x^2 +3889*x+1)*x^2 / (x-1)^17.
a(n) = n*(n-1)*(n^14 -23*n^13 +253*n^12 -1762*n^11 +8675*n^10 -31939*n^9 +90723*n^8 -202160*n^7 +355622*n^6 -492434*n^5 +529770*n^4 -430857*n^3 +251492*n^2 -94782*n +17493)/2.
(End)

A068241 1/2 the number of colorings of a 5 X 5 square array with n colors.

Original entry on oeis.org

1, 290493, 10221446382, 25410195205090, 10988934663584655, 1515888422040128871, 94793386050673781548, 3330373652089796835972, 75543449548467802433805, 1216257376373886871239985, 14865437328242111405302266, 144907139188443182894343078
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n*(n-1)*(-32126211 +(258309564 +(-1033880579 +(2734090327 +(-5348136944 +(8212654097 +(-10260465459 +(10671809555 +(-9383152441 +(7046057296 +(-4548768800 +(2534102852 +(-1219915634 +(507043269 +(-181400963 +(55554975 +(-14442408 +(3148503 +(-565677 +(81675 +(-9123+(741 +(-39+n)*n) *n)*n)*n)*n) *n)*n)*n) *n)*n)*n) *n)*n)*n) *n)*n)*n) *n)*n)*n) *n)*n)/2:
    seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012

Formula

From Alois P. Heinz, Apr 27 2012 (Start)
G.f.: (64045717133*x^23 +99613598986379*x^22 +30122616672179057*x^21 +2905816841816465011*x^20 +116885162434957285435*x^19 +2301461202426082443493*x^18 +24565180390104215669199*x^17 +152051416127748639010437*x^16 +570955972331169762888066*x^15 +1339611184016759341097870*x^14 +1999028208566595454861898*x^13 +1912423825883782158177854*x^12 +1171838449935804166262422*x^11 +455354414964383806296586*x^10 +109981844564513940260830*x^9 +15982890606970244203818*x^8 +1330217331928452928929*x^7 +58885777127277221367*x^6 +1238407862810793461*x^5 +10331590803059615*x^4 +25144532006783*x^3 +10213893889*x^2 +290467*x+1)*x^2 / (x-1)^26.
a(n) = n*(n-1)*(n^23 -39*n^22 +741*n^21 -9123*n^20 +81675*n^19 -565677*n^18 +3148503*n^17 -14442408*n^16 +55554975*n^15 -181400963*n^14 +507043269*n^13 -1219915634*n^12 +2534102852*n^11 -4548768800*n^10 +7046057296*n^9 -9383152441*n^8 +10671809555*n^7 -10260465459*n^6 +8212654097*n^5 -5348136944*n^4 +2734090327*n^3 -1033880579*n^2 +258309564*n -32126211)/2.
(End)

A068242 1/2 the number of colorings of a 6 X 6 square array with n colors.

Original entry on oeis.org

1, 50798448, 190026633752982, 16460573816989545700, 111739638856566209416695, 143179601228065200130305876, 57851338756390824653502708508, 10086461440383360741777407234232, 929834945885124428238498952273725, 52047326332129638504907000521132040
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Apr 27 2012

A068243 1/2 the number of colorings of a 7 X 7 square array with n colors.

Original entry on oeis.org

1, 20934997854, 19278946338342653286, 112656664890078627543093640, 20043672552286729048799884311015, 361011452813936865714801000277216206, 1332266848133993021484807934080054103804, 1550797305138088176220498521209275420942656
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Apr 27 2012

A068246 1/6 the number of colorings of a 5 X 5 rhombic hexagonal array with n colors.

Original entry on oeis.org

1, 672384, 24673292910, 47694893373440, 16222878355401375, 1842996126472816896, 98798500424990038764, 3068393771393664491520, 62960689342002146953005, 933100311834971308336000, 10639781338324232990590266, 97779035968707368095801344, 750090455889142956720814955
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (3008737472+ (-26856982336+ (115567646848+ (-319382723824+ (636837385892+ (-975405045160+ (1192546680096+ (-1193738274422+ (995467197535+ (-699933854941+ (418375982241+ (-213720456031+ (93568827565+ (-35133626327+ (11298632622+
    (-3101089711+ (722137763+ (-141421592+ (23000726+ (-3051871+ (321994+ (-25992+ (1508+(-56+n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
    seq (a(n), n=3..40); #  Alois P. Heinz, May 02 2012

Formula

G.f.: (1155805517421*x^22 +898154715023598*x^21 +153334491715682431*x^20 +9260621966248364140*x^19 +250086793798293779695*x^18 +3463005755473293705486*x^17 +26809839147864527991573*x^16 +122805799859998392511056*x^15 +345417237429621912129330*x^14 +610511151468783633149340*x^13 +686259871966584143669766*x^12 +491767778082675626596168*x^11 +223082415423639038320846*x^10 +62970879259692393145420*x^9 +10739574336476388551610*x^8 +1057138433525073018576*x^7 +56029398700931117553*x^6 +1436637989069258166*x^5 +14990828199704235*x^4 +47053606279980*x^3 +24655811251*x^2+672358*x+1)*x^3 / (x-1)^26. - Alois P. Heinz, May 02 2012

Extensions

Extended beyond a(10) by Alois P. Heinz, May 02 2012
Previous Showing 21-30 of 82 results. Next