cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A081142 12th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 36, 864, 17280, 311040, 5225472, 83607552, 1289945088, 19349176320, 283787919360, 4086546038784, 57954652913664, 811365140791296, 11234286564802560, 154070215745863680, 2095354934143746048
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001021 (powers of 12).

Crossrefs

Cf. A001021.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), this sequence (q=12), A027476 (q=15).

Programs

  • GAP
    List([0..20],n->12^(n-2)*Binomial(n,2)); # Muniru A Asiru, Nov 24 2018
  • Magma
    [12^(n-2)* Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(coeff(series(x^2/(1-12*x)^3,x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    LinearRecurrence[{36,-432,1728},{0,0,1},30] (* or *) Table[(n-1) (n-2) 3^(n-3) 2^(2n-7),{n,20}] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    vector(20, n, n--; 2^(2*n-5)*3^(n-2)*n*(n-1)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [2^(2*n-5)*3^(n-2)*n*(n-1) for n in range(20)] # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = 36*a(n-1) - 432*a(n-2) + 1728*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 12^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 12*x)^3.
a(n) = 2^(2*n-5)*3^(n-2)*n*(n-1). - Harvey P. Dale, Jul 25 2013
E.g.f.: (1/2)*exp(12*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 24 - 264*log(12/11).
Sum_{n>=2} (-1)^n/a(n) = 312*log(13/12) - 24. (End)

A081130 Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 6, 6, 0, 0, 0, 1, 9, 24, 10, 0, 0, 0, 1, 12, 54, 80, 15, 0, 0, 0, 1, 15, 96, 270, 240, 21, 0, 0, 0, 1, 18, 150, 640, 1215, 672, 28, 0, 0, 0, 1, 21, 216, 1250, 3840, 5103, 1792, 36, 0, 0, 0, 1, 24, 294, 2160, 9375, 21504, 20412, 4608, 45, 0
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Rows, of the square array, are three-fold convolutions of sequences of powers.

Examples

			The array begins as:
  0,  0,  0,   0,   0,    0, ...
  0,  0,  0,   0,   0,    0, ...
  0,  1,  1,   1,   1,    1, ... A000012
  0,  3,  6,   9,  12,   15, ... A008585
  0,  6, 24,  54,  96,  150, ... A033581
  0, 10, 80, 270, 640, 1250, ... A244729
The antidiagonal triangle begins as:
  0;
  0, 0;
  0, 0, 0;
  0, 0, 1, 0;
  0, 0, 1, 3,  0;
  0, 0, 1, 6,  6,  0;
  0, 0, 1, 9, 24, 10, 0;
		

Crossrefs

Main diagonal: A081131.
Rows: A000012 (n=2), A008585 (n=3), A033581 (n=4), A244729 (n=5).
Columns: A000217 (k=1), A001788 (k=2), A027472 (k=3), A038845 (k=4), A081135 (k=5), A081136 (k=6), A027474 (k=7), A081138 (k=8), A081139 (k=9), A081140 (k=10), A081141 (k=11), A081142 (k=12), A027476 (k=15).

Programs

  • Magma
    [k eq n select 0 else (n-k)^(k-2)*Binomial(k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
    
  • Mathematica
    Table[If[k==n, 0, (n-k)^(k-2)*Binomial[k, 2]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 14 2021 *)
  • PARI
    T(n, k)=if (k==0, 0, k^(n-2)*binomial(n, 2));
    seq(nn) = for (n=0, nn, for (k=0, n, print1(T(k, n-k), ", ")); );
    seq(12) \\ Michel Marcus, May 14 2021
  • Sage
    flatten([[0 if (k==n) else (n-k)^(k-2)*binomial(k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
    

Formula

T(n, k) = k^(n-2)*binomial(n, 2), with T(n, 0) = 0 (square array).
T(n, n) = A081131(n).
Rows have g.f. x^3/(1-k*x)^n.
From G. C. Greubel, May 14 2021: (Start)
T(k, n-k) = (n-k)^(k-2)*binomial(k,2) with T(n, n) = 0 (antidiagonal triangle).
Sum_{k=0..n} T(n, n-k) = A081197(n). (End)

Extensions

Term a(5) corrected by G. C. Greubel, May 14 2021
Previous Showing 11-12 of 12 results.