cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 379 results. Next

A237425 Denominators of A164555(n)/A027642(n) + A198631(n)/A006519(n+1).

Original entry on oeis.org

1, 1, 6, 4, 30, 2, 42, 8, 30, 2, 66, 4, 2730, 2, 6, 16, 510, 2, 798, 4, 330, 2, 138, 8, 2730, 2, 6, 4, 870, 2, 14322, 32, 510, 2, 6, 4, 1919190, 2, 6, 8, 13530, 2, 1806, 4, 690, 2, 282, 16, 46410, 2, 66, 4, 1590, 2, 798, 8
Offset: 0

Views

Author

Paul Curtz, Feb 07 2014

Keywords

Comments

An autosequence is a sequence which has its inverse binomial transform equal to the signed sequence. There are two possibilities. For the first kind, the main diagonal is 0's=A000004, the first two following diagonals being the same (generally not A000004). Integers example: A000045(n).
For the second kind, the main diagonal is the double of the following diagonal. Example: the companion to A000045(n) is A000032(n)=2, 1, 3, ... .
A000032(n)/2 is also a possibility. Here a(n) is the denominator of the sum of two autosequences of second kind involving (fractional) Euler and Bernoulli numbers. The corresponding fractional sequence is also an autosequence of the second kind: 2, 1, 1/6, -1/4, -1/30, 1/2, 1/42, -17/8, -1/30, 31/2, 5/66, -691/4, -691/2730,... . It could be divided by 2.

Crossrefs

Programs

  • Mathematica
    a[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[0] = 2; a[1] = 1; Table[a[n] // Denominator, {n, 0, 55}] (* Jean-François Alcover, Feb 11 2014 *)

Formula

a(2n) = A002445(n). a(2n+2) = A171977(n+2).

A249306 Denominators A027642(n) of Bernoulli numbers except for a(4*k+5)=2 instead of 1.

Original entry on oeis.org

1, 2, 6, 1, 30, 2, 42, 1, 30, 2, 66, 1, 2730, 2, 6, 1, 510, 2, 798, 1, 330, 2, 138, 1, 2730, 2, 6, 1, 870, 2, 14322, 1, 510, 2, 6, 1, 1919190, 2, 6, 1, 13530, 2, 1806, 1, 690, 2, 282, 1, 46410, 2, 66, 1, 1590, 2, 798, 1, 870, 2, 354, 1
Offset: 0

Views

Author

Paul Curtz, Oct 28 2014

Keywords

Comments

There exist an infinity of 1's, 2's, 6's, 30's, 42's, 66's, ... .
Respective ranks:
0, 3, 7, 11, 15, 19, ...
1, 5, 9, 13, 17, 21, ... (= A016813)
2, 14, 26, 34, 38, 62, ... (= A051222)
4, 8, 68, 76, 124, 152, ... (= A051226)
6, 114, 186, 258, 354, 402, ... (= A051228)
10, 50, 170, 370, 470, 590, ... (= A051230)
12, 24, 1308, 1884, 2004, 2364, ... (= A249134)
etc.
Hence by antidiagonals a permutation of A001477(n).
First column: A248614(n).
a(n) is an alternative sequence for the denominators of the Bernoulli numbers.
First 36 terms of the corresponding clockwise spiral:
.
330------2----138------1---2730------2
| |
| |
1 42------1-----30------2 6
| | | |
| | | |
798 2 1------2 66 1
| | | | |
| | | | |
2 30------1------6 1 870
| | |
| | |
510------1------6------2---2730 2
|
|
1------6------2----510------1--14322

Crossrefs

A variant of the Clausen numbers A141056, A160014. And of A176591.

Programs

  • Maple
    Clausen := proc(n) local S, i;
    S := numtheory[divisors](n); S := map(i->i+1, S);
    S := select(isprime, S); mul(i, i=S) end:
    A249306 := n -> `if`(n mod 4 = 3, 1, Clausen(n)):
    seq(A249306(n), n=0..59); # Peter Luschny, Nov 10 2014
  • Mathematica
    a[n_] := Denominator[BernoulliB[n]]; a[n_ /; Mod[n, 4] == 1] = 2; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 28 2014 *)

Formula

a(2n) = A002445(n), a(2n+1) = A000034(n+1).

A306821 Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Denominators.

Original entry on oeis.org

2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1
Offset: 0

Views

Author

Paul Curtz, Jun 04 2019

Keywords

Comments

Fractions: 1/2, 1/2, -4/3, 2, -38/15, 3, -73/21, 4, -68/15, 5, -179/33, 6, -9218/1365, 7, ... .
Numerators are A307974(n).
a(2n) same as denominators of cosecant numbers A001897 for n>0 (conjectured).

Crossrefs

Essentially the same as A141459.

Programs

  • Mathematica
    b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
    a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Denominator;
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 04 2019 *)

Formula

a(n) = A141459(n) * A141044(n).
a(n) = A141459(n) for n>2.
a(2n+1) = A054977(n).
a(2n) = A001897(n) * A054977(n).

A307974 Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Numerators.

Original entry on oeis.org

1, 1, -4, 2, -38, 3, -73, 4, -68, 5, -179, 6, -9218, 7, -19, 8, -3976, 9, 18143, 10, -89038, 11, 426463, 12, -118199108, 13, 4276511, 14, -11874736822, 15, 4307920527007, 16, -3854660524816, 17, 1288843929131, 18, -13157635776544491194, 19, 1464996956920721, 20, -130541359248224699708
Offset: 0

Views

Author

Paul Curtz, May 30 2019

Keywords

Comments

Denominators: 2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, ... .
Denominators 3, 15, 21, 15, 33, 1365, 3, 255, ... coincide with cosecant numbers A001897, except 1 (conjectured).

Examples

			Successive differences show the data in the first column:
    1/2,     1,    1/6,     0,    -1/30,   0,   1/42, 0, ...
    1/2,   -5/6,  -1/6,   -1/30,   1/30,  1/42, ...
   -4/3,    2/3,   2/15,   1/15,  -1/105, ...
     2,    -8/15, -1/15,  -8/105, ...
  -38/15,   7/15, -1/105, ...
     3,   -10/21, ...
  -73/21, ...
  ... .
The third column is A256671(n)/A256675(n).
		

Crossrefs

Cf. A001897, A027642, A164555, A176328 (for the second bisection), A256671/A256675, A306821 (denominators).

Programs

  • Mathematica
    m = 40;
    b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
    a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Numerator;
    Table[a[n], {n, 0, m}]
    (* Second program: *)
    m = 40;
    bb = CoefficientList[Series[x/(1 - Exp[-x]), {x, 0, m}], x]*Range[0, m]!;
    bb[[1]] = 1/2; bb[[2]] = 1;
    a[n_] := Differences[bb, n][[1]] // Numerator;
    Table[a[n], {n, 0, m}] (* Jean-François Alcover, May 31 2019 *)

Formula

a(2*n+1) = n+1 (conjectured).

A343979 Composite numbers m such that lambda(m) = lambda(D_{m-1}), where lambda(n) is the Carmichael function of n (A002322) and D_k is the denominator (A027642) of Bernoulli number B_k.

Original entry on oeis.org

5615659951, 36901698733, 55723044637, 776733036121, 2752403727511, 7725145165297, 14475486778537, 15723055492417, 22824071195485, 29325910221631, 54669159894469, 62086332981241, 125685944708905, 180225455689481, 298620660945331, 335333122310629, 426814989321721
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, May 06 2021

Keywords

Comments

Squarefree composites m such that LCM_{prime p|m} (p-1) = LCM_{prime p, p-1|m-1} (p-1).
Carmichael numbers m such that LCM_{prime p|m} (p-1) = LCM_{prime p, p-1|m-1} (p-1), i.e., with A173614(m) = A346467(m).
Carmichael numbers m such that their index (m-1)/lambda(m) = A346468(m), cf. A174590.
Carl Pomerance noted that, for k = 40826, Chernick's Carmichael number (6k+1)*(12k+1)*(18k+1) = 88189878776579929 satisfies this condition.
Theorem: lambda(m) | lambda(D_{m-1}) if and only if m | D_{m-1}.
Composites m such that lambda(m) | lambda(D_{m-1}) are all Carmichael numbers, defined as composites m such that lambda(m) | m-1, while lambda(D_{m-1}) | m-1 for every m.
Note that if p is prime, then lambda(p) = lambda(D_{p-1}) = p-1.

Crossrefs

Programs

  • Mathematica
    c = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[d_] := If[PrimeQ[d + 1], d, 1]; Select[c, LCM @@ (FactorInteger[#][[;; , 1]] - 1) == LCM @@ (q /@ Divisors[# - 1]) &]
  • PARI
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    A173614(n) = lcm(apply(p->p-1, factor(n)[, 1]));
    A346467(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); (m));
    isA343979(n) = ((n>1) && !isprime(n) && (!((n-1)%A002322(n))) && A173614(n)==A346467(n)); \\ Antti Karttunen, Jul 22 2021

A173242 Partial sums of A027642.

Original entry on oeis.org

1, 3, 9, 10, 40, 41, 83, 84, 114, 115, 181, 182, 2912, 2913, 2919, 2920, 3430, 3431, 4229, 4230, 4560, 4561, 4699, 4700, 7430, 7431, 7437, 7438, 8308, 8309, 22631, 22632, 23142, 23143, 23149, 23150, 1942340, 1942341, 1942347, 1942348, 1955878
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Crossrefs

Cf. A027642.

Programs

  • PARI
    a(n) = sum(k=0, n, denominator(bernfrac(k))); \\ Michel Marcus, Aug 28 2020

Formula

a(n) = Sum_{i=0..n} A027642(i).

Extensions

a(19) corrected by Georg Fischer, Aug 28 2020

A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.

Original entry on oeis.org

1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0

Views

Author

Paul Curtz, Apr 27 2012

Keywords

Comments

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.
Hence
1 1/2 1/6 0
1 -1/2 -1/3 -1/6 -1/30
1 -3/2 1/6 1/6 2/15 1/15
1 -5/2 5/3 0 -1/30 -1/15 -8/105.
The second row is A051716/A051717.
The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=
B(0)= 1 = 1 Redbernou1li
B(1)= -1/2 = 1 -3/2
B(2)= 1/6 = 1 -5/2 5/3
B(3)= 0 = 1 -7/2 25/6 -5/3
B(4)=-1/30 = 1 -9/2 23/3 -35/6 49/30
B(5)= 0 = 1 -11/2 73/6 -27/2 112/15 -49/30.
For the main diagonal, see A165142.
Denominator b(n) will be submitted.
This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).
With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.
Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is
1
1 -3/2
1 -5/2 10/6
1 -7/2 25/6 -10/6
1 -9/2 46/6 -35/6 49/30
1 -11/2 73/6 -81/6 224/30 -49/30.
For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.
Triangle Checkbernou1 with the same denominator A080326 for every row is
1/1
(2 -3)/2
(6 -15 +10)/6
(6 -21 +25 -10)/6
(30 -135 +230 -175 +49)/30
(30 -165 +365 -405 +224 -49)/30;
Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.
Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:
1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Formula

CB(0,x) = 1,
CB(1,x) = 1 - 3*x/2,
CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.

A219196 A subsequence of the denominators of the Bernoulli numbers: a(n) = A027642(A131577(n)).

Original entry on oeis.org

1, 2, 6, 30, 30, 510, 510, 510, 510, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590
Offset: 0

Views

Author

Paul Curtz, Nov 14 2012

Keywords

Comments

Conjecture: a(15) = a(16) = 131070, a(17) through a(32) = 8589934590.
Number of different terms: 1, 1, 1, 2, 4, ... = abs(A141531)?
Factorization of terms from 2:
2 = 2
6 = 2*3
30 = 2*3*5
510 = 2*3*5*17
131070 = 2*3*5*17*257
8589934590 = 2*3*5*17*257*65537.
Note that all factors shown are 2 or Fermat numbers (see A092506, A019434, A000215).
Empirical: using the von Staudt-Clausen theorem, terms a(17) through a(4215) are all 8589934590. - Simon Plouffe, Sep 20 2015
Using the von Staudt-Clausen theorem, a(n) is the product of 2 and all Fermat primes <= 2^(n-1)+1: see A019434. The only known Fermat primes are 3,5,17,257,65537; it is known that there are no others < 2^(2^33)+1, so that a(n) = 8589934590 for n <= 2^33 = 8589934592. - Robert Israel, Sep 21 2015

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Times @@ Select[ Divisors[2^(n-1)] + 1, PrimeQ]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 07 2012 *)
  • PARI
    a(n) = denominator(bernfrac(1<Michel Marcus, Aug 14 2013

Extensions

Extended up to a(20) by Jean-François Alcover, Dec 07 2012
More terms from Michel Marcus, Sep 27 2015

A219976 Denominators of the Inverse bi-binomial transform of A164558(n)/A027642(n) read downwards antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 1, 3, 3, 1, 30, 30, 30, 30, 30, 1, 15, 15, 15, 15, 1, 42, 42, 210, 210, 210, 42, 42, 1, 21, 21, 105, 105, 21, 21, 1, 30, 30, 210, 210, 210, 210, 210, 30, 30, 1, 15, 15, 105, 105, 105, 105, 15, 15, 1
Offset: 0

Views

Author

Paul Curtz, Dec 02 2012

Keywords

Comments

Starting from any sequence a(k) in the first row, we define the array T(n,k) of the inverse bi-binomial transform by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -2*T(n-1,k) n>0. Hence A164558(n)/A027642(n) and successive "bi-differences":
1, 3/2, 13/6, 3, 119/30, 5, 253/42, 7, 239/30, 9;
-1/2, -5/6, -4/3, -61/30, -44/15, -167/42, -106/21, -181/30, -104/15;
1/6, 1/3, 19/30, 17/15, 397/210, 61/21 , 853/210, 77/15;
0, -1/30, -2/15, -79/210, -92/105, -367/210, -314/105;
-1/30, -1/15, -23/210, -13/105, 1/210, 53/105;
0, 1/42, 2/21, 53/210, 52/105;
1/42, 1/21, 13/210, -1/105;
0, -1/30, -2/15;
-1/30, -1/15;
0.
The first column is A027641(n)/A027642(n).

Examples

			Partial array of denominators:
1,   2,   6,   1,  30,   1,  42,  1, 30,  1;
2,   6,   3,  30,  15,  42,  21, 30, 15;
6,   3,  30,  15, 210,  21, 210, 15;
1,  30,  15, 210, 105, 210, 105;
30, 15, 210, 105, 210, 105;
1,  42,  21, 210, 105;
42, 21, 210, 105;
1,  30,  15;
30, 15;
1.
a(n):
1;
2,   2;
6,   6,  6,;
1,   3,  3,  1;
30, 30, 30, 30, 30;
		

Crossrefs

Cf. A213268.

Programs

  • Mathematica
    A164558[n_] := Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k, 0, n}] // Numerator; t[0, k_?Positive] := A164558[k] / Denominator[ BernoulliB[k]]; t[n_?Positive, k_] := t[n, k] = t[n-1, k+1] - 2*t[n-1, k]; t[0, 0] = 1; t[, ] = 0; Flatten[ Table[t[n-k , k] // Denominator, {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 04 2012 *)

A228151 Denominators of r(n) = r(n-1) + r(n-2) + B_(n-2), where B_n is the n-th Bernoulli number A027641(n)/A027642(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 5, 30, 105, 70, 35, 70, 231, 2310, 143, 30030, 15015, 10010, 85085, 170170, 373065, 25194, 323323, 1939938, 22309287, 14872858, 168245, 74364290, 15935205, 223092870, 1078282205, 588153930, 20056049013, 5142576670, 393255863, 9550499530
Offset: 0

Views

Author

Paul Curtz, Aug 13 2013

Keywords

Comments

r(n): 0, 0, 1, 1/2, 5/3, 13/6, 19/5, 179/30, 1028/105, 1103/70, 893/35,... = A227500(n)/a(n). a(0)=a(1)=1 is a choice.

Crossrefs

Cf. A227500: numerators of r(n), where a(n) is named c(n).

Programs

  • Magma
    t:=40; r:=[n le 2 select 0 else Self(n-1)+Self(n-2)+BernoulliNumber(n-3): n in [1..t]]; [n le 2 select 1 else Denominator(r[n]): n in [1..t]]; // Bruno Berselli, Sep 05 2013
  • PARI
    r(n) = if (n<=1, 0, r(n-1) + r(n-2) + bernfrac(n-2));
    a(n) = if (n<=1, 1, denominator(r(n))); \\ Michel Marcus, Aug 24 2013
    

Extensions

More terms from Michel Marcus, Aug 24 2013
Previous Showing 21-30 of 379 results. Next