Original entry on oeis.org
1, 1, 6, 4, 30, 2, 42, 8, 30, 2, 66, 4, 2730, 2, 6, 16, 510, 2, 798, 4, 330, 2, 138, 8, 2730, 2, 6, 4, 870, 2, 14322, 32, 510, 2, 6, 4, 1919190, 2, 6, 8, 13530, 2, 1806, 4, 690, 2, 282, 16, 46410, 2, 66, 4, 1590, 2, 798, 8
Offset: 0
-
a[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[0] = 2; a[1] = 1; Table[a[n] // Denominator, {n, 0, 55}] (* Jean-François Alcover, Feb 11 2014 *)
A249306
Denominators A027642(n) of Bernoulli numbers except for a(4*k+5)=2 instead of 1.
Original entry on oeis.org
1, 2, 6, 1, 30, 2, 42, 1, 30, 2, 66, 1, 2730, 2, 6, 1, 510, 2, 798, 1, 330, 2, 138, 1, 2730, 2, 6, 1, 870, 2, 14322, 1, 510, 2, 6, 1, 1919190, 2, 6, 1, 13530, 2, 1806, 1, 690, 2, 282, 1, 46410, 2, 66, 1, 1590, 2, 798, 1, 870, 2, 354, 1
Offset: 0
Cf.
A000034,
A002445,
A016813,
A027642,
A051222,
A051226,
A051228,
A051230,
A090126,
A164020,
A248614,
A249134.
-
Clausen := proc(n) local S, i;
S := numtheory[divisors](n); S := map(i->i+1, S);
S := select(isprime, S); mul(i, i=S) end:
A249306 := n -> `if`(n mod 4 = 3, 1, Clausen(n)):
seq(A249306(n), n=0..59); # Peter Luschny, Nov 10 2014
-
a[n_] := Denominator[BernoulliB[n]]; a[n_ /; Mod[n, 4] == 1] = 2; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 28 2014 *)
A306821
Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Denominators.
Original entry on oeis.org
2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1
Offset: 0
-
b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Denominator;
Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 04 2019 *)
A307974
Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Numerators.
Original entry on oeis.org
1, 1, -4, 2, -38, 3, -73, 4, -68, 5, -179, 6, -9218, 7, -19, 8, -3976, 9, 18143, 10, -89038, 11, 426463, 12, -118199108, 13, 4276511, 14, -11874736822, 15, 4307920527007, 16, -3854660524816, 17, 1288843929131, 18, -13157635776544491194, 19, 1464996956920721, 20, -130541359248224699708
Offset: 0
Successive differences show the data in the first column:
1/2, 1, 1/6, 0, -1/30, 0, 1/42, 0, ...
1/2, -5/6, -1/6, -1/30, 1/30, 1/42, ...
-4/3, 2/3, 2/15, 1/15, -1/105, ...
2, -8/15, -1/15, -8/105, ...
-38/15, 7/15, -1/105, ...
3, -10/21, ...
-73/21, ...
... .
The third column is A256671(n)/A256675(n).
-
m = 40;
b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Numerator;
Table[a[n], {n, 0, m}]
(* Second program: *)
m = 40;
bb = CoefficientList[Series[x/(1 - Exp[-x]), {x, 0, m}], x]*Range[0, m]!;
bb[[1]] = 1/2; bb[[2]] = 1;
a[n_] := Differences[bb, n][[1]] // Numerator;
Table[a[n], {n, 0, m}] (* Jean-François Alcover, May 31 2019 *)
A343979
Composite numbers m such that lambda(m) = lambda(D_{m-1}), where lambda(n) is the Carmichael function of n (A002322) and D_k is the denominator (A027642) of Bernoulli number B_k.
Original entry on oeis.org
5615659951, 36901698733, 55723044637, 776733036121, 2752403727511, 7725145165297, 14475486778537, 15723055492417, 22824071195485, 29325910221631, 54669159894469, 62086332981241, 125685944708905, 180225455689481, 298620660945331, 335333122310629, 426814989321721
Offset: 1
-
c = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[d_] := If[PrimeQ[d + 1], d, 1]; Select[c, LCM @@ (FactorInteger[#][[;; , 1]] - 1) == LCM @@ (q /@ Divisors[# - 1]) &]
-
A002322(n) = lcm(znstar(n)[2]); \\ From A002322
A173614(n) = lcm(apply(p->p-1, factor(n)[, 1]));
A346467(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); (m));
isA343979(n) = ((n>1) && !isprime(n) && (!((n-1)%A002322(n))) && A173614(n)==A346467(n)); \\ Antti Karttunen, Jul 22 2021
Original entry on oeis.org
1, 3, 9, 10, 40, 41, 83, 84, 114, 115, 181, 182, 2912, 2913, 2919, 2920, 3430, 3431, 4229, 4230, 4560, 4561, 4699, 4700, 7430, 7431, 7437, 7438, 8308, 8309, 22631, 22632, 23142, 23143, 23149, 23150, 1942340, 1942341, 1942347, 1942348, 1955878
Offset: 0
A182397
Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.
Original entry on oeis.org
1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0
A219196
A subsequence of the denominators of the Bernoulli numbers: a(n) = A027642(A131577(n)).
Original entry on oeis.org
1, 2, 6, 30, 30, 510, 510, 510, 510, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590
Offset: 0
-
a[n_] := a[n] = Times @@ Select[ Divisors[2^(n-1)] + 1, PrimeQ]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 07 2012 *)
-
a(n) = denominator(bernfrac(1<Michel Marcus, Aug 14 2013
A219976
Denominators of the Inverse bi-binomial transform of A164558(n)/A027642(n) read downwards antidiagonals.
Original entry on oeis.org
1, 2, 2, 6, 6, 6, 1, 3, 3, 1, 30, 30, 30, 30, 30, 1, 15, 15, 15, 15, 1, 42, 42, 210, 210, 210, 42, 42, 1, 21, 21, 105, 105, 21, 21, 1, 30, 30, 210, 210, 210, 210, 210, 30, 30, 1, 15, 15, 105, 105, 105, 105, 15, 15, 1
Offset: 0
Partial array of denominators:
1, 2, 6, 1, 30, 1, 42, 1, 30, 1;
2, 6, 3, 30, 15, 42, 21, 30, 15;
6, 3, 30, 15, 210, 21, 210, 15;
1, 30, 15, 210, 105, 210, 105;
30, 15, 210, 105, 210, 105;
1, 42, 21, 210, 105;
42, 21, 210, 105;
1, 30, 15;
30, 15;
1.
a(n):
1;
2, 2;
6, 6, 6,;
1, 3, 3, 1;
30, 30, 30, 30, 30;
-
A164558[n_] := Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k, 0, n}] // Numerator; t[0, k_?Positive] := A164558[k] / Denominator[ BernoulliB[k]]; t[n_?Positive, k_] := t[n, k] = t[n-1, k+1] - 2*t[n-1, k]; t[0, 0] = 1; t[, ] = 0; Flatten[ Table[t[n-k , k] // Denominator, {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 04 2012 *)
A228151
Denominators of r(n) = r(n-1) + r(n-2) + B_(n-2), where B_n is the n-th Bernoulli number A027641(n)/A027642(n).
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 5, 30, 105, 70, 35, 70, 231, 2310, 143, 30030, 15015, 10010, 85085, 170170, 373065, 25194, 323323, 1939938, 22309287, 14872858, 168245, 74364290, 15935205, 223092870, 1078282205, 588153930, 20056049013, 5142576670, 393255863, 9550499530
Offset: 0
Cf.
A227500: numerators of r(n), where a(n) is named c(n).
-
t:=40; r:=[n le 2 select 0 else Self(n-1)+Self(n-2)+BernoulliNumber(n-3): n in [1..t]]; [n le 2 select 1 else Denominator(r[n]): n in [1..t]]; // Bruno Berselli, Sep 05 2013
-
r(n) = if (n<=1, 0, r(n-1) + r(n-2) + bernfrac(n-2));
a(n) = if (n<=1, 1, denominator(r(n))); \\ Michel Marcus, Aug 24 2013
Comments