cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A373825 Position of first appearance of n in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 13, 11, 105, 57, 33, 69, 59, 29, 227, 129, 211, 341, 75, 321, 51, 45, 407, 313, 459, 301, 767, 1829, 413, 537, 447, 1113, 1301, 1411, 1405, 2865, 1709, 1429, 3471, 709, 2543, 5231, 1923, 679, 3301, 2791, 6555, 5181, 6345, 11475, 2491, 10633
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, ...
with positions of first appearances a(n).
		

Crossrefs

Firsts of A373819 (run-lengths of A251092).
For antiruns we have A373827 (sorted A373826), firsts of A373820, run-lengths of A027833 (partial sums A029707, firsts A373401, sorted A373402).
The sorted version is A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A176246, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000], PrimeQ],#1+2==#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A049579 Numbers k such that prime(k)+2 divides (prime(k)-1)!.

Original entry on oeis.org

4, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that prime(k+1) - prime(k) does not divide prime(k+1) + prime(k). These are the numbers k for which prime(k+1) - prime(k) > 2. - Thomas Ordowski, Mar 31 2022
If we prepend 1, the first differences are A251092 (see also A175632). The complement is A029707. - Gus Wiseman, Dec 03 2024

Examples

			prime(4) = 7, 6!+1 = 721 gives residue 1 when divided by prime(4)+2 = 9.
		

Crossrefs

The first differences are A251092 except first term, run-lengths A373819.
The complement is A029707.
Runs of terms differing by one have lengths A027833, min A107770, max A155752.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A038664 finds the first prime gap of difference 2n.
A046933 counts composite numbers between primes.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    pnmQ[n_]:=Module[{p=Prime[n]},Mod[(p-1)!+1,p+2]==1]; Select[Range[ 100],pnmQ] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    isok(n) = (((prime(n)-1)! + 1) % (prime(n)+2)) == 1; \\ Michel Marcus, Dec 31 2013

Extensions

Definition edited by Thomas Ordowski, Mar 31 2022

A373200 Numbers k such that the k-th maximal antirun of squarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373127.

Original entry on oeis.org

1, 3, 8, 10, 19, 162, 1633, 1853, 2052, 26661, 46782, 1080330, 3138650
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A373128.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of squarefree numbers begin:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
The a(n)-th rows are:
    1
    3    5
   15   17   19   21
   23   26   29
   47   51   53   55   57
  483  485  487  489  491  493
		

Crossrefs

For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
The unsorted version is A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For composite runs we have A373400, unsorted A073051.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite antiruns we have the triple (1,2,7), firsts of A373403.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],SquareFreeQ],#1+1!=#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373819 Run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 10, 2, 4, 1, 7, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 18, 3, 2, 1, 2, 1, 17, 2, 1, 2, 2, 1, 6, 1, 9, 1, 3, 1, 1, 1, 1, 1, 1, 1, 8, 1, 3, 1, 2, 2, 15, 1, 1, 1, 4, 1, 1, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2024

Keywords

Comments

Run-lengths of A251092.

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths a(n).
		

Crossrefs

Run-lengths of A251092.
For antiruns we have A373820, run-lengths of A027833 (if we prepend 1).
Positions of first appearances are A373825, sorted A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000], PrimeQ],#1+2==#2&]//Most]//Most

A373824 Sorted positions of first appearances in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 11, 13, 29, 33, 45, 51, 57, 59, 69, 75, 105, 129, 211, 227, 301, 313, 321, 341, 407, 413, 447, 459, 537, 679, 709, 767, 1113, 1301, 1405, 1411, 1429, 1439, 1709, 1829, 1923, 2491, 2543, 2791, 2865, 3301, 3471, 3641, 4199, 4611, 5181, 5231, 6345, 6555
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Sorted positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3,...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted firsts of A373819 (run-lengths of A251092).
The unsorted version is A373825.
For antiruns we have A373826, unsorted A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths, run-lengths of A027833.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000],PrimeQ],#1+2==#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A089637 Smallest member of a pair of consecutive twin prime pairs that have exactly n primes between them.

Original entry on oeis.org

3, 17, 41, 107, 71, 2267, 1091, 461, 1319, 1151, 347, 5741, 2999, 5279, 10139, 1487, 9461, 881, 659, 13007, 9041, 15359, 8627, 28751, 83717, 13397, 18539, 14627, 44771, 54011, 60257, 59669, 142157, 77711, 61559, 178931, 26261, 122867, 293261, 89069, 24419, 167861
Offset: 0

Views

Author

Cino Hilliard, Jan 01 2004

Keywords

Comments

Smallest prime p such that n primes exist between the twin prime pair (p, p+2) and the next twin prime pair.
If this sequence is well defined then the Twin Prime Conjecture is true. - David A. Corneth, Dec 27 2019

Examples

			a(0) = 3 since there is no prime between the twin primes (3, 5) and (5, 7). - _David A. Corneth_, Dec 27 2019
a(1) = 17 since there is one prime, 23, between the twin primes (17, 19) and (29, 31).
a(2) = 41 since there are 2 primes, 47 and 53, between the twin primes (41, 43) and (59, 61).
		

Crossrefs

Programs

  • Maple
    A181981 := proc(n)
        local j,hi,lo ;
        if n = 0 then
            3;
        else
            for j from 1 do
                    hi := numtheory[pi](A001359(j+1)) ;
                    lo := numtheory[pi](A006512(j)) ;
                    if hi-lo = n+1 then
                        return A001359(j);
                    end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jul 03 2012
  • Mathematica
    countPrimes[pin_] := Module[{prv = pin, c = 0, p}, p = NextPrime[prv]; While[p != prv + 2, c++; prv = p; p = NextPrime[p]]; {c-1, p}]; p = 13; mx = 20; c = 0; seq = Table[0, {mx}]; While[c < mx, cp = countPrimes[p]; i = cp[[1]]; If[i > 0 && i <= mx && seq[[i]] == 0, c++; seq[[i]] = p - 2]; p = cp[[2]]]; seq (* Amiram Eldar, Dec 26 2019 *)
  • PARI
    pbetweentw(n) = /* p is the number of primes between */ { for(p=0, 100, forstep(x1=1, n, 1, my(c=0, t1 = twin[x1], t2 = twin[x1+1]); for(y=t1+4, t2-1, if(isprime(y), c++) ); if(c==p, print1(t1", "); break) ) ) }
    savetwins(n) = /* Build a twin prime table of lower bounds */ { twin = vector(n); my(c=1); forprime(x=3, n*10, if(isprime(x+2), twin[c]=x; c++; ) ) }

Extensions

Offset corrected and data corrected and expanded by Amiram Eldar, Dec 26 2019
a(0) = 3 prepended by David A. Corneth, Dec 27 2019

A373826 Sorted positions of first appearances in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

1, 4, 38, 6781, 23238, 26100
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Sorted positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted positions of first appearances in A373820, cf. A027833.
For runs we have A373824 (unsorted A373825), sorted firsts of A373819.
The unsorted version is A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373827 Position of first appearance of n in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

4, 1, 38, 6781, 26100, 23238
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with positions of first appearances a(n).
		

Crossrefs

Positions of first appearances in A373820.
For runs instead of antiruns we have A373825, sorted A373824.
The sorted version is A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A373574 Numbers k such that the k-th maximal antirun of nonsquarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373409.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 18, 52, 678
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A373573.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Is this sequence finite? Are there only 9 terms?

Examples

			The maximal antiruns of nonsquarefree numbers begin:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The a(n)-th rows are:
     4    8
     9   12   16   18   20   24
    28   32   36   40   44
    49
    64   68   72   75
    81   84   88   90   92   96   98
   148  150  152
   477  480  484  486  488  490  492  495
  6345 6348 6350 6352 6354 6356 6358 6360 6363
		

Crossrefs

For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For squarefree antiruns: A373200, firsts of A373127, unsorted A373128.
For composite runs we have A373400, firsts of A176246, unsorted A073051.
For prime antiruns we have A373402, firsts of A027833, unsorted A373401.
For composite antiruns we have the triple (1,2,7), firsts of A373403.
Sorted positions of first appearances in A373409.
The unsorted version is A373573.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[100000],!SquareFreeQ[#]&],#1+1!=#2&];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373817 Positions of terms > 1 in the run-lengths of the first differences of the odd primes.

Original entry on oeis.org

2, 14, 34, 36, 42, 49, 66, 94, 98, 100, 107, 117, 147, 150, 169, 171, 177, 181, 199, 219, 250, 268, 315, 333, 361, 392, 398, 435, 477, 488, 520, 565, 570, 585, 592, 595, 628, 642, 660, 666, 688, 715, 744, 765, 772, 778, 829, 842, 897, 906, 931, 932, 961, 1025
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2024

Keywords

Comments

Positions of terms > 1 in A333254. In other words, the a(n)-th run of differences of odd primes has length > 1.

Examples

			Primes 54 to 57 are {251, 257, 263, 269}, with differences (6,6,6). This is the 49th run, and the first of length > 2.
		

Crossrefs

Positions of adjacent equal prime gaps are A064113.
Positions of adjacent unequal prime gaps are A333214.
Positions of terms > 1 in A333254, run-lengths A373821, firsts A335406.
A000040 lists the primes, differences A001223.
A027833 gives antirun lengths of odd primes, run-lengths A373820.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    Join@@Position[Length /@ Split[Differences[Select[Range[1000],PrimeQ]]] // Most,x_Integer?(#>1&)]
Previous Showing 31-40 of 44 results. Next