A288188
Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=8 data values.
Original entry on oeis.org
1, 8, -7, 64, -84, 21, 512, -896, 224, 196, -35, 4096, -8960, 2240, 3920, -350, -980, 35, 32768, -86016, 21504, 56448, -3360, -18816, 336, -5488, 1470, 1176, -21, 262144, -802816, 200704, 702464, -31360, -263424, 3136, -153664, 27440, 21952, -196, 38416, -1372, -3430, 7
Offset: 1
Triangle begins
1;
8, -7;
64, -84, 21;
512, -896, 224, 196, -35;
4096, -8960, 2240, 3920, -350, -980, 35;
...
A288199
Irregular triangle read by rows: mean version of Girard-Waring formula (cf. A210258), for m = 4 data values.
Original entry on oeis.org
1, 4, -3, 16, -18, 3, 64, -96, 16, 18, -1, 256, -480, 80, 180, -30, -5, 1024, -2304, 384, 1296, -288, -108, -24, 9, 12, 4096, -10752, 1792, 8064, -2016, -1512, 112, 252, -112, 84, -7
Offset: 1
Triangle begins:
1;
4, -3;
16, -18, 3;
64, -96, 16, 18, -1;
256, -480, 80, 180, -5, -30;
...
The first few rows describe:
Row 1: SM_1 = 1 eM_1;
Row 2: SM_2 = 4*(eM_1)^2 - 3*eM_2;
Row 3: SM_3 = 16*(eM_1)^3 - 18*eM_1*eM_2 + 3*eM_3;
Row 4: SM_4 = 64*(eM_1)^4 - 96*(eM_1)^2*eM_2 + 16*eM_1*eM_3 + 18*(eM_2)^2 - 1*eM_4;
Row 5: SM_5 = 256*(eM_1)^5 - 480*(eM_1)^3*eM_2 + 80*(eM_1)^2*eM_2 + 180*eM_1*(eM_2)^2 - 30*eM_2*eM_3 - 5*eM_1*eM_4.
A288211
Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=6 data values.
Original entry on oeis.org
1, 6, -5, 36, -45, 10, 216, -360, 80, 75, -10, 1296, -2700, 600, 1125, -250, -75, 5, 7776, -19440, 4320, 12150, -3600, -1125, -540, 225, 200, 36, -1, 46656, -136080, 30240, 113400, -37800, -23625, 2800, 5250, -3780, 3150, -350, 252, -105, -7
Offset: 1
Triangle begins:
1;
6,-5;
36,-45,10;
216,-360,80,75,-10;
1296,-2700,600,1125,-250,-75,5;
7776,-19440,4320,12150,-3600,-1125,-540,225,200,36,-1;
...
Above represents:
SM_1 = eM_1;
SM_2 = 6*(eM_1)^2 - 5*eM_2;
SM_3 = 36*(eM_1)^3 - 45*eM_1*eM_2 + 10*eM_3;
SM_4 = 216*(eM_1)^4 - 360*(eM_1)^2*eM_2 + 80*eM_1*eM_3 + 75*(eM_2)^2 - 10*eM_4;
SM_5 = 1296*(eM_1)^5 - 2700*(eM_1)^3*eM_2 + 600*(eM_1)^2*eM_3 + 1125*eM_1*(eM_2)^2 - 250*eM_2*eM_3 - 75*eM_1*eM_4 + 5*eM_5;
...
First column of triangle is powers of m=6,
A000400.
A288245
Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=7 data values.
Original entry on oeis.org
1, 7, -6, 49, -63, 15, 343, -588, 140, 126, -20, 2401, -5145, 1225, 2205, -175, -525, 15, 16807, -43218, 10290, 27783, -1470, -8820, 126, -2646, 630, 525, -6, 117649, -352947, 84035, 302526, -12005, -108045, 1029, -64827, 10290, 8575, -49, 15435, -441, -1225, 1
Offset: 1
Triangular array begins...
1;
7,-6;
49,-63,15;
343,-588,140,126,-20;
2401,-5145,1225,2205,-175,-525,15;
16807,-43218,10290,27783,-1470,-8820,126,-2646,630,525,-6;
117649,-352947,84035,302526,-12005,-108045,1029,64827,10290,8575,-49,15435,-441,-1225,1;
First entries of each row of triangle are powers of m=7,
A000420.
A180870
D(n, x) is the Dirichlet kernel sin((n+1/2)x)/sin(x/2). The triangle gives in row n the coefficients of descending powers of x of the polynomial D(n, arccos(x)).
Original entry on oeis.org
1, 2, 1, 4, 2, -1, 8, 4, -4, -1, 16, 8, -12, -4, 1, 32, 16, -32, -12, 6, 1, 64, 32, -80, -32, 24, 6, -1, 128, 64, -192, -80, 80, 24, -8, -1, 256, 128, -448, -192, 240, 80, -40, -8, 1, 512, 256, -1024, -448, 672, 240, -160, -40, 10, 1
Offset: 0
The triangle T(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 2 -1
3: 8 4 -4 -1
4: 16 8 -12 -4 1
5: 32 16 -32 -12 6 1
6: 64 32 -80 -32 24 6 -1
7: 128 64 -192 -80 80 24 -8 -1
8: 256 128 -448 -192 240 80 -40 -8 1
9: 512 256 -1024 -448 672 240 -160 -40 10 1
10: 1024 512 -2304 -1024 1792 672 -560 -160 60 10 -1
... reformatted - _Wolfdieter Lang_, Jul 26 2014
Recurrence: T(4,2) = (1 + 1)*T(3,2) - T(3,1) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,3) - (-1)*T(3,2) = T(3,2) = -4. - _Wolfdieter Lang_, Jul 30 2014
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC 2002.
-
ogf := (1 + t)/(1 - 2*x*t + t^2):
ser := simplify(series(ogf, t, 12)): tc := n -> coeff(ser, t, n):
Trow := n -> local k; seq(coeff(tc(n), x, n-k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Oct 07 2024
-
row(n) = {if (n==0, return([1])); f = 2*x+1; for (k = 2, n, for (i = 1, (k-1)\2 + 1, f += (-1)^(i+1)*(binomial(k-i, i-1)*(2*x)^(k-2*i+2) - 2*binomial(k-1-i, i-1)*(2*x)^(k-2*i)););); Vec(f);} \\ Michel Marcus, Jul 18 2014
Missing term in sequence corrected by
Paul Curtz, Dec 31 2011
Edited (name reformulated, Wikipedia link added) by
Wolfdieter Lang, Jul 26 2014
A228565
Triangle read by rows: coefficients of descending powers of the polynomial V(n,x) = cos((2n+1)(arccos(x)/2))/cos(arccos(x)/2), n >= 0.
Original entry on oeis.org
1, 2, -1, 4, -2, -1, 8, -4, -4, 1, 16, -8, -12, 4, 1, 32, -16, -32, 12, 6, -1, 64, -32, -80, 32, 24, -6, -1, 128, -64, -192, 80, 80, -24, -8, 1, 256, -128, -448, 192, 240, -80, -40, 8, 1, 512, -256, -1024, 448, 672, -240, -160, 40, 10, -1, 1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1, 2048, -1024, -5120, 2304, 4608, -1792, -1792, 560, 280, -60, -12, 1, 4096, -2048, -11264, 5120, 11520, -4608, -5376, 1792, 1120, -280, -84, 12, 1
Offset: 0
V(0,x) = 1, V(1,x) = 2x-1, V(2,x) = 4x^2-2x-1, V(3,x) = 8x^3 -4x^2 - 4x + 1, V(4,x) = 16x^4 - 8x^3 - 12x^2 + 4x + 1, V(5,x) = 32x^5 - 16x^4 - 32x^3 + 12x^2 + 6x - 1, V(6,x) =64x^6 - 32x^5 - 80x^4 + 32x^3 + 24x^2 - 6x - 1, ...
Triangle begins:
1;
2, -1;
4, -2, -1;
8, -4, -4, 1;
16, -8, -12, 4, 1;
32, -16, -32, 12, 6, -1;
64, -32, -80, 32, 24, -6, -1;
128, -64, -192, 80, 80, -24, -8, 1;
256, -128, -448, 192, 240, -80, -40, 8, 1;
512, -256, -1024, 448, 672, -240, -160, 40, 10, -1;
1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1;
...
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2002.
-
A228565 := proc(n,k)
local t,Vn,x ;
t := arccos(x) ;
Vn := cos((n+1/2)*t)/cos(t/2) ;
coeftayl(%,x=0,n-k) ;
end proc:
for n from 0 to 10 do
for k from 0 to n do
printf("%d,",A228565(n,k)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Mar 12 2014
-
V[n_] := Cos[(2*n + 1)*(ArcCos[x]/2)]/Cos[ArcCos[x]/2];
row[n_] := CoefficientList[V[n] + O[x]^(n + 1), x] // Reverse;
Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 20 2017 *)
A288207
Irregular triangle read by rows: mean version of Girard-Waring formula A210258, for m = 5 data values.
Original entry on oeis.org
1, 5, -4, 25, -30, 6, 125, -200, 40, 40, -4, 625, -1250, 250, 500, -25, -100, 1, 3125, -7500, 1500, 4500, -150, -1200, 6, -400, 60, 60, 15625, -43750, 8750, 35000, -875, -10500, 35, -7000, 700, 700, 1400, -14, -70
Offset: 1
Triangle begins:
1;
5, -4;
25, -30, 6;
125, -200, 40, 40, -4;
625, -1250, 250, 500, -100, -25, 1;
...
Above represents:
SM_1 = 1*eM_1;
SM_2 = 5*(eM_1)^2 -4*eM_2;
SM_3 = 25*(eM_1)^3 - 30*eM_1*eM_2 + 6*eM_3;
SM_4 = 125*(eM_1)^4 - 200*(eM_1)^2*eM_2 + 40*eM_1*eM_3 + 40*(eM_2)^2 - 4*eM_4;
SM_5 = 625*(eM_1)^5 - 1250*(eM_1)^3*eM_2 + 250*(eM_1)^2*eM_3 + 500*eM_1*(eM_2)^2 - 100*eM_2*eM_3 - 25*eM_1*eM_4 + 1*eM_5;
...
First column of triangle are powers of m=5,
A000351.
Original entry on oeis.org
1, 8, 45, 224, 1045, 4680, 20377, 86912, 364905, 1513160, 6211909, 25290720, 102251773, 410963336, 1643288625, 6541692416, 25939798993, 102503274120, 403800061789, 1586318259680, 6216231359205, 24304019419592, 94826736906697, 369285078314880, 1435615286196025
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind
- Index entries for linear recurrences with constant coefficients, signature (8,-18,8,-1).
-
Table[ D[ ChebyshevT[n, x], x] /. x -> 2, {n, 25}]
CoefficientList[Series[-x(x^2 - 1)/(x^2 - 4x + 1)^2, {x, 0, 24}], x] (* Robert G. Wilson v, Aug 07 2018 *)
-
Vec(x*(1 - x)*(1 + x) / (1 - 4*x + x^2)^2 + O(x^40)) \\ Colin Barker, Jul 28 2018
-
a(n) = subst(deriv(polchebyshev(n)), x, 2); \\ Michel Marcus, Jul 29 2018
A207537
Triangle of coefficients of polynomials u(n,x) jointly generated with A207538; see Formula section.
Original entry on oeis.org
1, 2, 1, 4, 3, 8, 8, 1, 16, 20, 5, 32, 48, 18, 1, 64, 112, 56, 7, 128, 256, 160, 32, 1, 256, 576, 432, 120, 9, 512, 1280, 1120, 400, 50, 1, 1024, 2816, 2816, 1232, 220, 11, 2048, 6144, 6912, 3584, 840, 72, 1, 4096, 13312, 16640, 9984, 2912, 364, 13
Offset: 1
First seven rows:
1;
2, 1;
4, 3;
8, 8, 1;
16, 20, 5,
32, 48, 18, 1;
64, 112, 56, 7;
From _Philippe Deléham_, Mar 03 2012: (Start)
Triangle A201701 begins:
1;
1, 0;
2, 1, 0;
4, 3, 0, 0;
8, 8, 1, 0, 0;
16, 20, 5, 0, 0, 0;
32, 48, 18, 1, 0, 0, 0;
64, 112, 56, 7, 0, 0, 0, 0;
... (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
(* Prepending 1 and with offset 0: *)
Tpoly[n_] := HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {1/2}, x + 1];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
A123956
Triangle of coefficients of polynomials P(k) = 2*X*P(k - 1) - P(k - 2), P(0) = -1, P(1) = 1 + X, with twisted signs.
Original entry on oeis.org
-1, 1, 1, -1, -2, -2, 1, -3, 4, 4, -1, 4, 8, -8, -8, 1, 5, -12, -20, 16, 16, -1, -6, -18, 32, 48, -32, -32, 1, -7, 24, 56, -80, -112, 64, 64, -1, 8, 32, -80, -160, 192, 256, -128, -128, 1, 9, -40, -120, 240, 432, -448, -576, 256, 256, -1, -10, -50, 160, 400, -672, -1120, 1024, 1280, -512, -512
Offset: 0
Triangle begins:
{-1},
{ 1, 1},
{-1, -2, -2},
{ 1, -3, 4, 4},
{-1, 4, 8, -8, -8},
{ 1, 5, -12, -20, 16, 16},
{-1, -6, -18, 32, 48, -32, -32},
{ 1, -7, 24, 56, -80, -112, 64, 64},
{-1, 8, 32, -80, -160, 192, 256, -128, -128},
{ 1, 9, -40, -120, 240, 432, -448, -576, 256, 256},
{-1, -10, -50, 160, 400, -672, -1120, 1024, 1280, -512, -512},
...
- CRC Standard Mathematical Tables and Formulae, 16th ed. 1996, p. 484.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Lutterbach, Approximating ODE y' = f(t,y) by using leapfrog method, Mathematics Stack Exchange, Nov 21 2019
- Alastair MacDougall, 83.31 A Pascal-like triangle for coefficients of Chebyshev polynomials">, The Mathematical Gazette, Vol. 83, Issue 497 (Jul 1999), pp. 276-280.
-
p[ -1, x] = 0; p[0, x] = 1; p[1, x] = x + 1;
p[k_, x_] := p[k, x] = 2*x*p[k - 1, x] - p[k - 2, x];
w = Table[CoefficientList[p[n, x], x], {n, 0, 10}];
An[d_] := Table[If[n == d && m 1/y)] /. 1/y -> 1, y], {d, 1, 11}] // Flatten
-
P=List([-1,1-'x]); {A123956(n,k)=for(i=#P, n+1, listput(P, P[i-1]-2*'x*P[i])); polcoef(P[n+1],k)*(-1)^((n-k-1)\2+!k*n\2)} \\ M. F. Hasler, Nov 30 2022
Comments