cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A002728 Number of n X (n+2) binary matrices.

Original entry on oeis.org

1, 4, 22, 190, 3250, 136758, 17256831, 7216495370, 10271202313659, 49856692830176512, 826297617412284162618, 46948445432190686211183650, 9200267975562856184153936960940, 6261904454889790650636380541051266410, 14910331834338546882501064075429145637985605
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    a:= n-> add(add(2^add(add(igcd(i, j)* coeff(s, x, i)*
          coeff(t, x, j), j=1..degree(t)), i=1..degree(s))/
          mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))/
          mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t)),
          t=b(n+2$2)), s=b(n$2)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Function[{p}, p + j*x^i]@ b[n-i*j, i-1] , {j, 0, n/i}]]] // Flatten; a[n_] := Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+2, n+2]}], {s, b[n, n]}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 28 2014, after Alois P. Heinz *)
  • PARI
    a(n) = A(n+2,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023

Formula

a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n+2} (fix A[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fix A[...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*t_j). - Sean A. Irvine, Jul 31 2014

Extensions

More terms from Vladeta Jovovic, Feb 04 2000

A005745 Number of n-covers of an unlabeled 3-set.

Original entry on oeis.org

1, 6, 23, 65, 156, 336, 664, 1229, 2159, 3629, 5877, 9221, 14070, 20951, 30530, 43634, 61283, 84725, 115461, 155294, 206368, 271210, 352784, 454550, 580509, 735280, 924163, 1153207, 1429292, 1760218, 2154776, 2622859, 3175555, 3825247
Offset: 1

Views

Author

Keywords

Comments

Number of n X 3 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055609.

Programs

Formula

a(n) = A002727(n) - A002623(n).
G.f.: -x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from Vladeta Jovovic, May 26 2000

A005746 Number of n-covers of an unlabeled 4-set.

Original entry on oeis.org

1, 9, 51, 230, 863, 2864, 8609, 23883, 61883, 151214, 350929, 778113, 1656265, 3398229, 6743791, 12983181, 24311044, 44377016, 79124476, 138048542, 236050912, 396137492, 653285736, 1059923072, 1693592112, 2667563553, 4145373780, 6360553548, 9643151582
Offset: 1

Views

Author

Keywords

Comments

Number of n X 4 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055082.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 3 x + 9 x^2 + 26 x^3 + 35 x^4 + 92 x^5 + 127 x^6 + 201 x^7 + 242 x^8 + 253 x^9 + 248 x^10 + 205 x^11 + 123 x^12 + 86 x^13 + 31 x^14 + 24 x^15 + 19 x^16 + 5 x^17 + 3 x^18 -
    2 x^19 - 4 x^20 + 2 x^21 - 4 x^22 + 3 x^23 - x^25 + 2 x^26 - x^27)/((1 - x)^16 (1 + x)^6 (1 + x^2)^3 (1 + x + x^2)^4), {x, 0, 29}], x] (* Michael De Vlieger, Aug 23 2016 *)
  • PARI
    Vec(x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4) + O(x^40)) \\ Colin Barker, Aug 23 2016
    
  • PARI
    Vec(G(4, x) - G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

a(n) = A006148(n) - A002727(n).
G.f.: x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4). - Corrected by Colin Barker, Aug 23 2016

Extensions

More terms and g.f. from Vladeta Jovovic, May 26 2000
a(19) onwards corrected by Sean A. Irvine, Aug 22 2016

A005747 Number of n-covers of an unlabeled 6-set.

Original entry on oeis.org

1, 16, 196, 2197, 22952, 223034, 2004975, 16642937, 127654604, 907349654, 6000728764, 37093282121, 215296646264, 1178514299094, 6108871834312, 30098215339608, 141433252447082, 635816643771438, 2742163498527536, 11374522802412498, 45482770393453638
Offset: 1

Views

Author

Keywords

Comments

Number of n X 6 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055084.

Programs

Extensions

Corrected and extended by Vladeta Jovovic, Jun 13 2000
Terms a(20) and beyond from Andrew Howroyd, Feb 28 2023

A005771 Number of n-covers of an unlabeled 5-set.

Original entry on oeis.org

1, 12, 103, 736, 4571, 25326, 127415, 588687, 2518997, 10053739, 37656707, 133084998, 445949359, 1422934989, 4340110439, 12697803333, 35744330644, 97081519369, 255032046536, 649459943602, 1606518048420, 3867119228081, 9073566868140, 20783186834063
Offset: 1

Views

Author

Keywords

Comments

Number of n X 5 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055083.

Programs

Formula

a(n) = A052264(n) - A006148(n). - Andrew Howroyd, Feb 28 2023

Extensions

More terms from Vladeta Jovovic, Jun 13 2000
Terms a(21) and beyond from Andrew Howroyd, Feb 28 2023

A055084 Number of 6 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 15, 180, 2001, 20755, 200082, 1781941, 14637962, 111011667, 779695050, 5093379110, 31092553357, 178203364143, 963217652830, 4930357535218, 23989343505296, 111335037107474, 494383391324356, 2106346854756098
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=6 of A056152.

Programs

A055082 Number of 4 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 8, 42, 179, 633, 2001, 5745, 15274, 38000, 89331, 199715, 427184, 878152, 1741964, 3345562, 6239390, 11327863, 20065972, 34747460, 58924066, 98002370, 160086580, 257148244, 406637336, 633669040, 973971441, 1477810227, 2215179768, 3282598034, 4811946882
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=4 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A055083 Number of 5 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 11, 91, 633, 3835, 20755, 102089, 461272, 1930310, 7534742, 27602968, 95428291, 312864361, 976985630, 2917175450, 8357692894, 23046527311, 61337188725, 157950527167, 394427897066, 957058104818, 2260601179661, 5206447640059, 11709619965923, 25752660738209
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=5 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A241956 Number of inequivalent m X n binary matrices, where equivalence means permutations of rows or columns. Presented in diagonal order, with (m,n)=(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ... .

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 13, 13, 5, 6, 22, 36, 22, 6, 7, 34, 87, 87, 34, 7, 8, 50, 190, 317, 190, 50, 8, 9, 70, 386, 1053, 1053, 386, 70, 9, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11
Offset: 1

Views

Author

Don Knuth, Aug 09 2014

Keywords

Comments

Same as A028657 without first row and column.

Examples

			The array begins:
  2  3    4     5      6        7         8           9 ...
  3  7   13    22     34       50        70          95 ...
  4 13   36    87    190      386       734        1324 ...
  5 22   87   317   1053     3250      9343       25207 ...
  6 34  190  1053   5624    28576    136758      613894 ...
  7 50  386  3250  28576   251610   2141733    17256831 ...
  8 70  734  9343 136758  2141733  33642660   508147108 ...
  9 95 1324 25207 613894 17256831 508147108 14685630688 ...
  (cf. A028657).
		

Crossrefs

Cf. A002724.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i<1, [], [seq(map(
          p->`if`(j=0, p, [p[], [i, j]]), b(n-i*j, i-1))[], j=0..n/i)]))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (m, n)-> g(min(m, n), abs(m-n)):
    seq(seq(A(m, 1+d-m), m=1..d), d=1..12); # Alois P. Heinz, Aug 13 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Union[Flatten[Table[ Function[{p}, p + j*x^i] /@ b[n - i*j, i - 1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    Table[A[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 09 2019, after Alois P. Heinz in A028657 *)

A353585 Square array T(n,k): row n lists the number of inequivalent matrices over Z/nZ, modulo permutations of rows and columns, of size r X c, 1 <= r <= c, c >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 7, 6, 4, 1, 4, 27, 10, 5, 1, 13, 10, 76, 15, 6, 1, 36, 92, 20, 175, 21, 7, 1, 5, 738, 430, 35, 351, 28, 8, 1, 22, 15, 8240, 1505, 56, 637, 36, 9, 1, 87, 267, 35, 57675, 4291, 84, 1072, 45, 10, 1, 317, 5053, 1996, 70, 289716, 10528, 120, 1701, 55, 11
Offset: 1

Views

Author

M. F. Hasler, Apr 28 2022

Keywords

Comments

The array is read by falling antidiagonals.
Each row lists the number of inequivalent matrices of size 1 X 1, then 2 X 1, 2 X 2, then 3 X 1, 3 X 2, 3 X 3, etc., with coefficients in Z/nZ (or equivalently, in {1, ..., n}). See Examples for more.
Row 1 counts the zero matrices, there is only one of any size. Row 2 counts binary matrices, this is the lower triangular part of A028657, without the trivial row & column 0. (This table might have been extended with a trivial column 0 = A000012 (counting the 1 matrix of size 0) and row 0 = A000007 counting the number of r X c matrices with no entry, as done in A246106.)
The square matrices (size 1 X 1, 2 X 2, 3 X 3, ...) are counted in columns with triangular numbers, k = T(r) = r(r+1)/2 = (1, 3, 6, 10, 15, ...) = A000217.

Examples

			The table starts
   n \ k=1,  2,   3,   4,   5,   6, ...: T(n,k)
  ----+--------------------------------------
   1  |  1   1    1    1    1     1 ...
   2  |  2   3    7    4   13    36 ...
   3  |  3   6   27   10   92   738 ...
   4  |  4  10   76   20  430  8240 ...
   5  |  5  15  175   35 1505 57675 ...
  ...
Columns 2, 3 and 4, 5, 6 correspond to matrices of size 1 X 2, 2 X 2 and 1 X 3, 2 X 3, 3 X 3, respectively.
Column 4 says that there are (1, 4, 10, 20, 35, ...) inequivalent matrices of size 1 X 3 with entries in Z/nZ (n = 1, 2, 3, 4, ...); these numbers are given by (n+2 choose 3) = binomial(n+2, 3) = n(n+1)(n+2)/6 = A000292(n).
		

Crossrefs

All of the following related sequences can be expressed in terms of T(n, k, r) := T(n, k(k-1)/2 + r), WLOG r <= k:
A028657(n,k) = A353585(2,n,k): inequivalent m X n binary matrices,
A002723(n) = T(2,n,2): size n X 2, A002724(n) = T(2,n,n): size n X n,
A002727(n) = T(2,n,3): size n X 3, A002725(n) = T(2,n,n+1): size n X (n+1),
A006148(n) = T(2,n,4): size n X 4, A002728(n) = T(2,n,n+2): size n X (n+2),
A052264(n) = T(2,n,5): size n X 5,
A052269(n) = T(3,n,n): number of inequivalent ternary matrices of size n X n,
A052271(n) = T(4,n,n): number of inequivalent matrices over Z/4Z of size n X n,
A052272(n) = T(5,n,n): number of inequivalent matrices over Z/5Z of size n X n,
A246106(n,k) = A353585(k,n,n): number of inequivalent n X n matrices over Z/kZ, and its diagonal A091058 and columns 1, 2, ..., 10: A000012, A091059, A091060, A091061, A091062, A246122, A246123, A246124, A246125, A246126.

Programs

  • PARI
    A353585(n,k,r)={if(!r,r=sqrtint(8*k)\/2; k-=r*(r-1)\2); my(m(c, p=1, L=0)=for(i=1,#c, if(i==#c || c[i+1]!=c[i], p *= c[i]^(i-L)*(i-L)!; L=i )); p, S=0); forpart(P=k, my(T=0); forpart(Q=r, T += n^sum(i=1,#P, sum(j=1,#Q, gcd(P[i],Q[j]) ))/m(Q)); S += T/m(P)); S}

Formula

Let k = c(c-1)/2 + r, 1 <= r <= c, then
T(n, c, r) := T(n, k) = Sum_{p in P(c), q in P(r)} n^S(p, q)/(N(p)*N(q)), where P(r) are the partitions of r, S(p, q) = Sum_{i in p, j in q} gcd(i, j), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p.
(See, e.g., A080577 for a list of partitions of positive integers.)
In particular:
T(n, 1) = n, T(n, 2) = n(n+1)/2 = A000217(n), T(n, 4) = C(n+2, 3) = A000292(n), T(n, 7) = C(n+3, 4) = A000332(n+3), etc.: T(n, k(k+1)/2 + 1) = C(n+k, k+1),
T(n, k(k+1)/2) = A246106(k, n).
Previous Showing 21-30 of 33 results. Next