A164604 a(n) = ((1+4*sqrt(2))*(3+2*sqrt(2))^n + (1-4*sqrt(2))*(3-2*sqrt(2))^n)/2.
1, 19, 113, 659, 3841, 22387, 130481, 760499, 4432513, 25834579, 150574961, 877615187, 5115116161, 29813081779, 173763374513, 1012767165299, 5902839617281, 34404270538387, 200522783613041, 1168732431139859
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..155 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+4*r)*(3+2*r)^n+(1-4*r)*(3-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009 -
Mathematica
LinearRecurrence[{6,-1}, {1,19}, 50] (* G. C. Greubel, Aug 11 2017 *)
-
PARI
Vec((1+13*x)/(1-6*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011
Formula
a(n) = 6*a(n-1) - a(n-2) for n > 1; a(0) = 1, a(1) = 19.
G.f.: (1+13*x)/(1-6*x+x^2).
E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x) ). - G. C. Greubel, Aug 11 2017
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009
Comments