cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 85 results. Next

A342050 Numbers k which have an odd number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 30, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 60, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 90, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 120, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 150, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 180, 182, 184, 188, 190, 194, 196, 200, 202, 206, 208, 212
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is odd.
All the terms are even since odd numbers have 0 trailing zeros, and 0 is not odd.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * Sum_{k=1..m}(-1)^k/A002110(k) = 1, 2, 11, 76, 837, 10880, 184961, ...
The asymptotic density of this sequence is Sum_{k>=1} (-1)^(k+1)/A002110(k) = 0.362306... (A132120).
Also Heinz numbers of partitions with even least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021
Numbers k such that A000720(A053669(k)) is even. Differences from the related A353531 seem to be terms that are multiples of 210, but not all of them, for example primorial 30030 (= 143*210) is in neither sequence. Consider also A038698. - Antti Karttunen, Apr 25 2022

Examples

			2 is a term since A049345(2) = 10 has 1 trailing zero.
4 is a term since A049345(2) = 20 has 1 trailing zero.
30 is a term since A049345(2) = 1000 has 3 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
      2: {1}             46: {1,9}             90: {1,2,2,3}
      4: {1,1}           50: {1,3,3}           92: {1,1,9}
      8: {1,1,1}         52: {1,1,6}           94: {1,15}
     10: {1,3}           56: {1,1,1,4}         98: {1,4,4}
     14: {1,4}           58: {1,10}           100: {1,1,3,3}
     16: {1,1,1,1}       60: {1,1,2,3}        104: {1,1,1,6}
     20: {1,1,3}         62: {1,11}           106: {1,16}
     22: {1,5}           64: {1,1,1,1,1,1}    110: {1,3,5}
     26: {1,6}           68: {1,1,7}          112: {1,1,1,1,4}
     28: {1,1,4}         70: {1,3,4}          116: {1,1,10}
     30: {1,2,3}         74: {1,12}           118: {1,17}
     32: {1,1,1,1,1}     76: {1,1,8}          120: {1,1,1,2,3}
     34: {1,7}           80: {1,1,1,1,3}      122: {1,18}
     38: {1,8}           82: {1,13}           124: {1,1,11}
     40: {1,1,1,3}       86: {1,14}           128: {1,1,1,1,1,1,1}
     44: {1,1,5}         88: {1,1,1,5}        130: {1,3,6}
(End)
		

Crossrefs

Complement of A342051.
A099800 is subsequence.
Analogous sequences: A001950 (Zeckendorf representation), A036554 (binary), A145204 (ternary), A217319 (base 4), A232745 (factorial base).
The version for reversed binary expansion is A079523.
Positions of even terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339662 gives greatest gap in prime indices.
Differs from A353531 for the first time at n=77, where a(77) = 212, as this sequence misses A353531(77) = 210.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], OddQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],EvenQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A353525(n) = { for(i=1,oo,if(n%prime(i),return((i+1)%2))); }
    isA342050(n) = A353525(n);
    k=0; n=0; while(k<77, n++; if(isA342050(n), k++; print1(n,", "))); \\ Antti Karttunen, Apr 25 2022

Extensions

More terms added (to differentiate from A353531) by Antti Karttunen, Apr 25 2022

A342051 Numbers k which have an even number of trailing zeros in their primorial base representation A049345(k).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 91, 93, 95, 96, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2021

Keywords

Comments

Numbers k such that A276084(k) is even.
The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * (1 - Sum_{k=1..m}(-1)^k/A002110(k)) = 1, 4, 19, 134, 1473, 19150, 325549 ...
The asymptotic density of this sequence is Sum_{k>=0} (-1)^k/A002110(k) = 0.637693... = 1 - A132120.
Also Heinz numbers of partitions with odd least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - Gus Wiseman, Apr 23 2021

Examples

			1 is a term since A049345(1) = 1 has 0 trailing zero.
6 is a term since A049345(6) = 100 has 2 trailing zeros.
From _Gus Wiseman_, Apr 23 2021: (Start)
The sequence of terms together with their prime indices begins:
     1: {}           25: {3,3}          51: {2,7}
     3: {2}          27: {2,2,2}        53: {16}
     5: {3}          29: {10}           54: {1,2,2,2}
     6: {1,2}        31: {11}           55: {3,5}
     7: {4}          33: {2,5}          57: {2,8}
     9: {2,2}        35: {3,4}          59: {17}
    11: {5}          36: {1,1,2,2}      61: {18}
    12: {1,1,2}      37: {12}           63: {2,2,4}
    13: {6}          39: {2,6}          65: {3,6}
    15: {2,3}        41: {13}           66: {1,2,5}
    17: {7}          42: {1,2,4}        67: {19}
    18: {1,2,2}      43: {14}           69: {2,9}
    19: {8}          45: {2,2,3}        71: {20}
    21: {2,4}        47: {15}           72: {1,1,1,2,2}
    23: {9}          48: {1,1,1,1,2}    73: {21}
    24: {1,1,1,2}    49: {4,4}          75: {2,3,3}
(End)
		

Crossrefs

Complement of A342050.
A099788 is subsequence.
Analogous sequences: A000201 (Zeckendorf representation), A003159 (binary), A007417 (ternary), A232744 (factorial base).
The version for reversed binary expansion is A121539.
Positions of odd terms in A257993.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A339662 gives greatest gap in prime indices.

Programs

  • Mathematica
    seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], EvenQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4]
    Select[Range[100],OddQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)

A107770 Index of greater of twin primes in the primes.

Original entry on oeis.org

3, 4, 6, 8, 11, 14, 18, 21, 27, 29, 34, 36, 42, 44, 46, 50, 53, 58, 61, 65, 70, 82, 84, 90, 99, 105, 110, 114, 117, 121, 141, 143, 145, 149, 153, 172, 174, 177, 179, 183, 191, 202, 207, 210, 213, 216, 226, 231, 235, 237, 254, 257, 263, 266, 269, 278, 287
Offset: 1

Views

Author

Roger L. Bagula, Jun 11 2005

Keywords

Comments

Numbers k such that prime(k) - prime(k-1) = 2.
Numbers k such that A062301(k) is 1. - Vincenzo Librandi, Apr 04 2018

Crossrefs

Cf. A062301.

Programs

Formula

a(n) = A029707(n) + 1. - Juri-Stepan Gerasimov, Dec 16 2009
a(n) = A000720(A006512(n)).

Extensions

Incorrect comment removed by Charles R Greathouse IV, Mar 19 2010
More terms from Harvey P. Dale, Jun 10 2014

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most

A373405 Sum of the n-th maximal antirun of odd primes differing by more than two.

Original entry on oeis.org

3, 5, 18, 30, 71, 109, 202, 199, 522, 210, 617, 288, 990, 372, 390, 860, 701, 1281, 829, 1194, 1645, 4578, 852, 2682, 4419, 3300, 2927, 2438, 1891, 2602, 14660, 1632, 1650, 3378, 3480, 18141, 2052, 3121, 2112, 4310, 8922, 13131, 6253, 3851, 3889, 3929, 13788
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A027833 (except initial term).
An antirun of a sequence (in this case A000040\{2}) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
		

Crossrefs

The partial sums are a subset of A071148 (partial sums of odd primes).
Functional neighbors: A001359, A006512, A027833 (partial sums A029707), A373404, A373406, A373411, A373412.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.

Programs

  • Mathematica
    Total/@Split[Select[Range[3,1000],PrimeQ],#1+2!=#2&]//Most

A373406 Sum of the n-th maximal run of odd primes differing by two.

Original entry on oeis.org

15, 24, 36, 23, 60, 37, 84, 47, 53, 120, 67, 144, 79, 83, 89, 97, 204, 216, 113, 127, 131, 276, 300, 157, 163, 167, 173, 360, 384, 396, 211, 223, 456, 233, 480, 251, 257, 263, 540, 277, 564, 293, 307, 624, 317, 331, 337, 696, 353, 359, 367, 373, 379, 383
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A251092.
For this sequence we define a run to be an interval of positions at which consecutive terms differ by two. Normally, a run has consecutive terms differing by one, but odd prime numbers already differ by at least two.
Contains A054735 (sums of twin prime pairs) without its first two terms and A007510 (non-twin primes) as subsequences. - R. J. Mathar, Jun 07 2024

Examples

			Row-sums of:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
  83
  89
  97
		

Crossrefs

The partial sums are a subset of A071148 (partial sums of odd primes).
Functional neighbors: A025584, A054265, A067774, A251092 (or A175632), A373405, A373413, A373414.
A000040 lists the primes, differences A001223.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[3,100],PrimeQ],#1+2==#2&]//Most

A339662 Greatest gap in the partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 2, 4, 0, 5, 3, 1, 0, 6, 0, 7, 2, 3, 4, 8, 0, 2, 5, 1, 3, 9, 0, 10, 0, 4, 6, 2, 0, 11, 7, 5, 2, 12, 3, 13, 4, 1, 8, 14, 0, 3, 2, 6, 5, 15, 0, 4, 3, 7, 9, 16, 0, 17, 10, 3, 0, 5, 4, 18, 6, 8, 2, 19, 0, 20, 11, 1, 7, 3, 5, 21, 2, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also the index of the greatest prime, up to the greatest prime index of n, not dividing n. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Positions of first appearances are A000040.
Positions of 0's are A055932.
The version for positions of 1's in reversed binary expansion is A063250.
The prime itself (not just the index) is A079068.
The version for crank is A257989.
The minimal instead of maximal version is A257993.
The version for greatest difference is A286469 or A286470.
Positive integers by Heinz weight and image are counted by A339737.
Positions of 1's are A339886.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[maxgap[primeMS[n]],{n,100}]

Formula

a(n) = A000720(A079068(n)).

A373820 Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.

Original entry on oeis.org

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of the version of A027833 with 1 prepended.

Examples

			The antiruns of odd primes (differing by > 2) begin:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
 103 107
 109 113 127 131 137
 139 149
 151 157 163 167 173 179
 181 191
 193 197
 199 211 223 227
 229 233 239
 241 251 257 263 269
 271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
  1  1
  2  2
  3  3
  4
  3
  6
  2
  5
  2
  6
  2  2
  4
  3
  5
  3
  4
with lengths a(n).
		

Crossrefs

Run-lengths of A027833 (if we prepend 1), partial sums A029707.
For runs we have A373819, run-lengths of A251092.
Positions of first appearances are A373827, sorted A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000],PrimeQ],#2-#1>2&]//Most]//Most

A373822 Sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

4, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 12, 4, 12, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 2, 10, 18, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 12, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-sums of A001223. For run-lengths instead of run-sums we have A333254.

Examples

			The odd primes are
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with sums a(n).
		

Crossrefs

Run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Dividing by two gives A373823.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]

A096478 a(n) = A000040(A096477(n)), i.e., prime(a(n)) and prime(a(n)+1) are twin primes.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 41, 43, 83, 89, 109, 113, 173, 277, 307, 313, 353, 373, 463, 563, 577, 601, 613, 643, 673, 719, 743, 1117, 1123, 1171, 1279, 1571, 1621, 1627, 1709, 1741, 1823, 1867, 1907, 1949, 1979, 1987, 1999, 2003, 2063, 2099, 2153, 2287, 2309, 2311
Offset: 1

Views

Author

Labos Elemer, Jun 23 2004

Keywords

Comments

Gives primes in A029707. - Pierre CAMI, Apr 20 2006

Examples

			89 is a term since it is a prime and prime(89 + 1) - prime(89) = 463 - 461 = 2; the prime with subscript 89 (which is prime) and the next prime (i.e., prime(90)) are twin primes.
		

Crossrefs

Programs

  • Mathematica
    Prime[Flatten[Position[Table[Prime[Prime[n]+1]-Prime[Prime[n]], {n, 1, 1000}], 2]]]
Previous Showing 21-30 of 85 results. Next