cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A251673 Numbers that are not palindromes, but whose squares are palindromes.

Original entry on oeis.org

26, 264, 307, 836, 2285, 2636, 22865, 24846, 30693, 798644, 1042151, 1109111, 1270869, 2012748, 2294675, 3069307, 11129361, 12028229, 12866669, 30001253, 64030648, 110091011, 111091111, 306930693, 2062386218, 2481623254, 10106064399, 10109901101, 10110911101
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 06 2014

Keywords

Comments

The corresponding sequence excluding numbers in A059744 starts: 1109111, 110091011, 111091111, 10109901101, 10110911101, ....
The sequence is infinite, for instance it contains 111*100^k + 91*10^k + 111 for k > 3. - Emmanuel Vantieghem, Sep 30 2017

Crossrefs

Supersequence of A059744. Cf. A029742, A002778.

Programs

  • Magma
    [n: n in [0..3069307] | not Intseq(n, 10) eq Reverse(Intseq(n, 10)) and Intseq(n^2, 10) eq Reverse(Intseq(n^2, 10))];
    
  • Mathematica
    a251673[n_Integer] := Select[Range[n], IntegerDigits[#] != Reverse@IntegerDigits[#] && IntegerDigits[#^2] == Reverse@IntegerDigits[#^2] &]; a251673[10^7] (* Michael De Vlieger, Dec 14 2014 *)
  • PARI
    for(n=1,10^6,d=digits(n);d2=digits(n^2);if(Vecrev(d2)==d2&&Vecrev(d)!=d,print1(n,", "))) \\ Derek Orr, Dec 13 2014

Formula

A029742 INTERSECT A002778.

A319440 Squares of non-palindromic number.

Original entry on oeis.org

100, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3136, 3249, 3364, 3481, 3600, 3721, 3844
Offset: 1

Views

Author

Seiichi Manyama, Sep 19 2018

Keywords

Crossrefs

Programs

  • Magma
    [n^2: n in [0..65] | Intseq(n) ne Reverse(Intseq(n))]; // Vincenzo Librandi, Sep 19 2018
    
  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; DeleteCases[Range[10, 110],?palQ]^2 (* _Vincenzo Librandi, Sep 19 2018 *)
  • Python
    def A319440(n):
        def f(x): return n+x//10**((l:=len(s:=str(x)))-(k:=l+1>>1))-(int(s[k-1::-1])>x%10**k)+10**(k-1+(l&1^1))-1
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**2 # Chai Wah Wu, Oct 28 2024

Formula

a(n) = A029742(n)^2.

A319441 Cubes of non-palindromic numbers.

Original entry on oeis.org

1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 91125, 97336, 103823, 110592, 117649, 125000, 132651, 140608
Offset: 1

Views

Author

Seiichi Manyama, Sep 19 2018

Keywords

Comments

This is not a subsequence of A029742. - Bruno Berselli, Sep 19 2018

Examples

			2201^3 = 10662526601 is a term.
		

Crossrefs

Programs

  • Magma
    [n^3: n in [0..65] | Intseq(n) ne Reverse(Intseq(n))]; // Vincenzo Librandi, Sep 19 2018
    
  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; DeleteCases[Range[10, 110], ?palQ]^3 (* _Vincenzo Librandi, Sep 19 2018 *)
    Select[Range[100],!PalindromeQ[#]&]^3 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    is_a029742(n)=my(d=digits(n)); d!=Vecrev(d) \\ after Charles R Greathouse IV in A029742
    terms(n) = my(i=0, x=1); while(1, if(i==n, break, if(is_a029742(x), print1(x^3, ", "); i++)); x++)
    /* Print initial 40 terms as follows */
    terms(40) \\ Felix Fröhlich, Sep 19 2018
    
  • Python
    def A319441(n):
        def f(x): return n+x//10**((l:=len(s:=str(x)))-(k:=l+1>>1))-(int(s[k-1::-1])>x%10**k)+10**(k-1+(l&1^1))-1
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m**3 # Chai Wah Wu, Jul 24 2024

Formula

a(n) = A029742(n)^3.

A357044 Lexicographic earliest sequence of distinct palindromes (A002113) such that a(n)+a(n+1) is never palindromic.

Original entry on oeis.org

1, 9, 3, 7, 5, 8, 2, 11, 4, 6, 22, 88, 44, 66, 77, 33, 99, 55, 101, 909, 111, 191, 121, 181, 131, 171, 141, 161, 151, 252, 262, 242, 272, 232, 282, 222, 292, 212, 393, 313, 494, 323, 383, 333, 373, 343, 363, 353, 454, 464, 444, 474, 434, 484, 424
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Sep 14 2022

Keywords

Comments

Obviously the sequence cannot contain 0.
It is easy to prove that the sequence is a permutation of the nonzero palindromes (in the sense that it contains each of them exactly once).

Crossrefs

Cf. A002113 (palindromes), A029742 (non-palindromes), A262038 (next palindrome), A357045 (non-palindromes with palindromic sum of neighbors).

Programs

  • PARI
    A357044_first(n, U=[0], a=9)={vector(n,k, k=U[1]; while(is_A002113(a+k=A262038(k+1)) || setsearch(U, k), ); U=setunion(U,[a=k]); while(#U>1 && U[2]==A262038(U[1]+1), U=U[^1]); a)}
    
  • Python
    from itertools import count, islice
    def ispal(n): s = str(n); return s == s[::-1]
    def nextpal(p): # next largest palindrome after palindrome p
        d = str(p)
        if set(d) == {'9'}: return int('1' + '0'*(len(d)-1) + '1')
        h = str(int(d[:(len(d)+1)//2]) + 1)
        return int(h + h[:-1][::-1]) if len(d)&1 else int(h + h[::-1])
    def agen():
        aset, pal, minpal = {1}, 1, 2
        while True:
            an = pal; yield an; aset.add(an); pal = minpal
            while pal in aset or ispal(an+pal): pal = nextpal(pal)
            while minpal in aset: minpal = nextpal(minpal)
    print(list(islice(agen(), 55))) # Michael S. Branicky, Sep 14 2022

A062908 Non-palindromic number and its reversal are both even.

Original entry on oeis.org

20, 24, 26, 28, 40, 42, 46, 48, 60, 62, 64, 68, 80, 82, 84, 86, 200, 204, 206, 208, 210, 214, 216, 218, 220, 224, 226, 228, 230, 234, 236, 238, 240, 244, 246, 248, 250, 254, 256, 258, 260, 264, 266, 268, 270, 274, 276, 278, 280, 284, 286, 288, 290, 294, 296
Offset: 1

Views

Author

Amarnath Murthy, Jul 01 2001

Keywords

Examples

			24 and 42 are both multiples of 2.
		

Crossrefs

Cf. A029742 (non-palindromic), A005843 (even numbers).

Programs

  • ARIBAS
    n := 2; stop := 410; m := 0; while m < stop do rev := int_reverse(m); if m <> rev and rev mod n = 0 then write(m," "); end; inc(m,n); end;
    
  • Mathematica
    Select[Range[2,296,2],EvenQ[Last[x=Reverse[y=IntegerDigits[#]]]] && x!=y &] (* Jayanta Basu, May 17 2013 *)
  • PARI
    isok(m) =  {if (!(m%2), my(r=fromdigits(Vecrev(digits(m)))); if ((r!=m) && !(r%2), print1(m, ", ")););} \\ Michel Marcus, Oct 10 2020

Extensions

More terms from Dean Hickerson, Jul 06 2001

A217252 Lucky numbers whose digital reversal is another lucky number.

Original entry on oeis.org

13, 15, 31, 37, 51, 73, 115, 133, 163, 169, 189, 193, 195, 327, 331, 339, 361, 385, 391, 399, 511, 529, 537, 579, 583, 591, 723, 729, 735, 739, 925, 927, 933, 937, 961, 975, 981, 993
Offset: 1

Views

Author

M. F. Hasler, Mar 16 2013

Keywords

Comments

Inspired by the error in A140291 (forgotten palindromes 33 and 99), pointed out by L. Edson Jeffery in a post to the SeqFan list.
This sequence is obtained from A118561 by removal of the palindromes A031161 = (1, 3, 7, 9, 33, 99, 111, 141, 151, 171, 303, 393, 535, 717, 727, 777, 787, 979, ...)
By analogy with the "emirps" A006567 and "emirpimes" A097393, these might be called "ykcul"s, for lucky numbers which, when reversed, are different lucky numbers.

Crossrefs

Formula

A217252 = A118561 \ A031161 = A118561 \ A002113 = A118561 intersect A029742 = { n in A000959 | R(n) is in A000959 and different from n }, where R = A004086.

A280354 Numbers n such that (i) number of divisors of n equals number of divisors of digit reversal of n, (ii) sum of divisors of n equals sum of divisors of digit reversal of n, and (iii) n is not a palindrome.

Original entry on oeis.org

1561, 1651, 5346, 6435, 157661, 166751, 301134, 321853, 358123, 431103, 507955, 511665, 517055, 537495, 539946, 550715, 559705, 566115, 576908, 594735, 649935, 729287, 765677, 776567, 782927, 809675, 834498, 894438, 896898, 898698, 905289, 982509, 1257912, 1473302
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Intersection of A062895 and A085329.
Numbers n such that A000005(n) = A000005(A004086(n)), A000203(n) = A000203(A004086(n)) and A136522(n) = 0.

Examples

			1561 is in the sequence because 1561 has 4 divisors {1, 7, 223, 1561}, 1 + 7 + 223 + 1561 = 1792 and 1651 has 4 divisors {1, 13, 127, 1651}, 1 + 13 + 127 + 1651 = 1792.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500000], !PalindromeQ[#1] && DivisorSigma[0, #1] == DivisorSigma[0, FromDigits[Reverse[IntegerDigits[#1]]]] && DivisorSigma[1, #1] == DivisorSigma[1,FromDigits[Reverse[IntegerDigits[#1]]]] & ]
    fQ[n_]:=With[{irn=IntegerReverse[n]},!PalindromeQ[n]&&DivisorSigma[0,n]==DivisorSigma[0,irn] && DivisorSigma[1,n] == DivisorSigma[ 1,irn]]; Select[Range[1480000],fQ] (* Harvey P. Dale, Dec 17 2024 *)
  • PARI
    R(n) = eval(concat(Vecrev(Str(n))));
    isok(n) = n != R(n) && numdiv(n) == numdiv(R(n)) && sigma(n) == sigma(R(n));
    for(n=1561, 1473302, if(isok(n), print1(n, ", "))) \\ Indranil Ghosh, Mar 06 2017

A359510 Numbers that can't be written as a palindromic product, i.e., such that the concatenation of all digits of the factors yields a palindrome.

Original entry on oeis.org

23, 26, 29, 30, 34, 35, 37, 38, 43, 47, 53, 57, 59, 62, 65, 67, 70, 73, 74, 79, 82, 83, 85, 86, 87, 89, 92, 94, 95, 97, 103, 106, 107, 109, 123, 127, 130, 134, 137, 139, 140, 142, 145, 146, 148, 149, 152, 157, 158, 163, 167, 170, 173, 174, 178, 179, 182, 183, 185, 190, 193, 194, 197
Offset: 1

Views

Author

M. F. Hasler and Eric Angelini, Jan 03 2023

Keywords

Comments

Any number of factors 1 is allowed anywhere in the product.
The sequence contains all primes which are not palindromic when stripped of digits '1' on either side (for example 23, 29, 37, but not 13, 17, 19, 31 which can be written as 13*1, 17*1, 19*1, 1*31, etc., where the concatenation of all digits, "131", "171", ... is palindromic).

Examples

			Any palindrome is trivially a palindromic product and therefore not in the sequence. Also not in the sequence are 10 = 10*1, 12 = 12*1, ..., 20 = 2*5*2, 21 = 1*21. Therefore the first term is a(1) = 23.
		

Crossrefs

Cf. A002113 (palindromes in base 10), A029742 (non-palindromes), A334321 (non-palindromic primes), A004176 (omit digits 1).

A372488 The smallest nonpalindromic number that shares n or more distinct prime factors with the prime factors of its reverse.

Original entry on oeis.org

10, 12, 24, 264, 8580, 24024, 2168166, 67897830, 2448684420
Offset: 0

Views

Author

Scott R. Shannon, May 02 2024

Keywords

Comments

When a number is reversed any leading 0's are dropped; the resulting number may be palindromic.

Examples

			a(3) = 264 as 264 = 2^3 * 3 * 11 and 264 in reverse is 462 = 2 * 3 * 7 * 11, which share three prime factors 2, 3, and 11.
		

Crossrefs

A377191 Smallest number of digits that must be changed in n to obtain a palindrome (without changing the first digit to 0).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0
Offset: 0

Views

Author

Franz Vrabec, Oct 19 2024

Keywords

Comments

The sequence is unbounded, with a(n) = k first occurring at n = A377192(k).

Examples

			a(12) = 1 because 12 is not a palindrome, but changing 1 digit appropriately (either the first or second in this case) yields a palindrome.
		

Crossrefs

Formula

a(A002113(n)) = 0, a(A029742(n)) > 0.
a(n) = 0 iff A136522(n) = 1, a(n) > 0 iff A136522(n) = 0.
Previous Showing 21-30 of 33 results. Next